Integrating sines

Calculus Level 5

Evaluate

0 0 sin x sin y sin ( x + y ) x y ( x + y ) d x d y \large \int\limits_0^\infty \int\limits_0^\infty \dfrac{\sin x\sin y\sin(x+y)}{xy(x+y)}\; dx\; dy

Enter your answer up to two decimal places.

Inspiration


The answer is 1.64.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mehdi Elkouhlani
May 5, 2017

Let g ( x ) = 0 e x p ( 2 y x ) 1 + y 2 d y g(x)=\int\limits_0^\infty \dfrac{exp(-2yx)}{1+y^2}\; dy and f ( x ) = x s i n ( 2 ( y x ) ) y d y f(x)=\large\int\limits_x^\infty\frac{sin(2(y-x))}{y}\ dy . We have g ( x ) = f ( x ) g(x)=f(x) ( We can start by showing that f f and g g are two functions of class C 2 C_{2} then f " + f = g " + g f"+f=g"+g and f ( 0 ) = g ( 0 ) f(0)=g(0) .)

We have: 0 0 sin x sin y sin ( x + y ) x y ( x + y ) d y d x = π 2 / 4 0 0 s i n 2 ( x ) sin ( 2 y ) x 2 ( x + y ) d y d x = π 2 / 4 0 x s i n 2 ( x ) sin ( 2 ( y x ) ) x 2 y d y d x \large\int_{0}^{\infty}\int_{0}^{\infty} \frac{\sin x \sin y \sin (x+y)}{xy(x+y)} dy dx =\pi ^2 /4 - \int_{0}^{\infty}\int_{0}^{\infty} \frac{\ sin^2(x)\sin(2y)}{x^2 (x+y)}dy dx =\pi^2 /4 - \int_{0}^{\infty}\int_{x}^{\infty} \frac{\ sin^2(x)\sin(2(y-x))}{x^2 y}dy dx

Now we can replace f f by g g and we get :

0 0 sin x sin y sin ( x + y ) x y ( x + y ) d y d x = π 2 / 4 0 f ( x ) sin 2 ( x ) x 2 d x = π 2 / 4 0 g ( x ) sin 2 ( x ) x 2 d x = π 2 / 4 0 0 sin 2 ( x ) e x p ( 2 x y ) ( 1 + y 2 ) x 2 d x d y = π 2 / 4 0 1 y 2 + 1 0 sin 2 ( x ) e x p ( 2 x y ) x 2 d x d y \large\int_{0}^{\infty}\int_{0}^{\infty} \frac{\sin x \sin y \sin (x+y)}{xy(x+y)} dy dx =\pi ^2 /4 - \int_{0}^{\infty} \frac{f(x) \sin^2(x) }{x^2} dx = \pi ^2 /4 - \int_{0}^{\infty} \frac{g(x) \sin^2(x) }{x^2} dx = \pi ^2 /4 - \int_{0}^{\infty}\int_{0}^{\infty} \frac{\sin^2(x) exp(-2xy) }{(1+y^2)x^2} dx dy = \pi ^2 /4 -\int_{0}^{\infty} \frac{1}{y^2+1} \int_{0}^{\infty} \frac{\sin^2(x) exp(-2xy) }{x^2} dx dy

We can now use Laplace transform of sin 2 ( x ) x 2 \frac{\sin^2(x)}{x^2} which I will write it directly: 0 sin 2 ( x ) e x p ( 2 x y ) x 2 d x = a r c t a n ( 1 y ) y l o g ( 1 + 1 y 2 ) 2 \int_{0}^{\infty} \frac{\sin^2(x) exp(-2xy) }{x^2} dx = arctan(\frac{1}{y}) -\frac{ylog(1+\frac{1}{y^2})}{2}

Then we get :

π 2 / 4 0 1 y 2 + 1 0 sin 2 ( x ) e x p ( 2 x y ) x 2 d x d y = π 2 / 4 0 2 a r c t a n ( 1 y ) y l o g ( 1 + 1 y 2 ) 2 ( 1 + y 2 ) d y \pi ^2 /4 -\int_{0}^{\infty} \frac{1}{y^2+1} \int_{0}^{\infty} \frac{\sin^2(x) exp(-2xy) }{x^2} dx dy =\pi^2/4 - \int_{0}^{\infty} \frac{2arctan(\frac{1}{y}) -ylog(1+\frac{1}{y^2})}{2(1+y^2)} dy

The remaining integral is equal to π 2 / 12 \pi^2/12 and we get π 2 / 6 \pi^2/6

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...