Integration @ 02

Calculus Level 5

Y = 0 1 2 x 2 + 3 x + 3 ( x + 1 ) ( x 2 + 2 x + 2 ) d x Y = \int _{ 0 }^{ 1 }{ \frac { 2{ x }^{ 2 }+3x+3 }{ (x+1)({ x }^{ 2 }+2x+2) } } dx

Which of the following options are equal to Y ? Y?

(A) π 4 + 2 log 2 arctan 2 \ \frac { \pi }{ 4 } +2\log2-\arctan { 2 }

(B) π 4 + 2 log 2 arctan 1 3 \ \frac { \pi }{ 4 } +2\log2-\arctan {\frac{1}{3}}

(C) 2 log 2 arccot 3 \ 2 \log 2 - \text{arccot 3}

(D) π 4 + log 4 + arccot 2 \ -\frac{\pi}{4}+\log4+\text{arccot 2}

(A), (B) and (C) (A), (B), (C) and (D) (A), (B) and (D) (A) and (C) (A), (C) and (D) (A) and (D) (B) and (C) (B), (C) and (D)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Akhilesh Vibhute
Nov 28, 2015

LOL! No need to integrate just Simplify the options and you will get option A, C and D as same..... So this is how we make life absolutely easy :-) As simple as that...

Brilliant is for studying and for that you need to try solve the questions.....No one cares if you cheat.

Anandhu Raj - 5 years, 3 months ago

Why do that when integrating is much more easier.

Kunal Verma - 5 years, 2 months ago

Y = 0 1 2 x 2 + 3 x + 3 ( x + 1 ) ( x 2 + 2 x + 2 ) d x By partial fraction decomposition = 0 1 ( 2 x + 1 1 x 2 + 2 x + 2 ) d x = 0 1 ( 2 x + 1 1 ( x + 1 ) 2 + 1 ) d x = 2 log ( x + 1 ) arctan ( x + 1 ) 0 1 = 2 log 2 arctan 2 + π 4 . . . ( A ) \begin{aligned} Y & = \int_0^1 \frac {2x^2+3x+3}{(x+1)(x^2+2x+2)} dx & \small \color{#3D99F6} \text{By partial fraction decomposition} \\ & = \int_0^1 \left(\frac 2{x+1} - \frac 1{x^2+2x+2} \right) dx \\ & = \int_0^1 \left(\frac 2{x+1} - \frac 1{(x+1)^2+1} \right) dx \\ & = 2 \log (x+1) - \arctan (x+1) \bigg|_0^1 \\ & = 2\log 2 \ {\color{#3D99F6} - \arctan 2 + \frac \pi 4} \quad ...(A) \end{aligned}

From (A):

A = 2 log 2 + π 4 arctan 2 = 2 log 2 + arctan ( 1 2 1 + 2 ) = 2 log 2 arccot 3 . . . ( C ) \begin{aligned} A & = 2\log 2 + \color{#3D99F6} \frac \pi 4 - \arctan 2 \\ & = 2\log 2 + \color{#3D99F6} \arctan \left( \frac {1-2}{1+2} \right) \\ & = 2\log 2 \ \color{#3D99F6} - \text{arccot 3} & ...(C) \end{aligned}

From (A):

A = 2 log 2 + π 4 arctan 2 = π 4 + log 4 + π 2 arctan 2 = π 4 + log 4 + arccot 2 . . . ( D ) \begin{aligned} A & = 2\log 2 + \frac \pi 4 - \arctan 2 \\ & = - \frac \pi 4 + \log 4 + \color{#3D99F6} \frac \pi 2 - \arctan 2 \\ & = - \frac \pi 4 + \log 4 + \color{#3D99F6} \text{arccot 2} &...(D) \end{aligned}

Therefore, Y Y is equal to options (A), (C) and (D) .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...