Integration 1

Calculus Level 3

1 2 x ( x 2 + 1 ) ( x 2 + 2 ) d x \large \int_1^2 \dfrac x{(x^2+1)(x^2+2)} \, dx

If the integral above can be expressed as ln a b \ln \sqrt{\dfrac ab } , where a a and b b are coprime positive integers, find a + b a+b .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 12, 2016

I = 1 2 x ( x 2 + 1 ) ( x 2 + 2 ) d x Let u = x 2 d u = 2 x d x = 1 2 1 4 1 ( u + 1 ) ( u + 2 ) d u = 1 2 1 4 ( 1 u + 1 1 u + 2 ) d u = 1 2 [ ln ( u + 1 ) ln ( u + 2 ) ] 1 4 = 1 2 [ ln ( u + 1 u + 2 ) ] 1 4 = 1 2 [ ln ( 5 6 ) ln ( 2 3 ) ] = 1 2 ln ( 5 4 ) = ln 5 4 \begin{aligned} I & = \int_1^2 \frac{x}{(x^2+1)(x^2+2)}dx \quad \quad \small \color{#3D99F6}{\text{Let }u = x^2 \quad \Rightarrow du = 2 x\space dx} \\ & = \frac{1}{2} \int_1^4 \frac{1}{(u+1)(u+2)}du \\ & = \frac{1}{2} \int_1^4 \left(\frac{1}{u+1} - \frac{1}{u+2} \right) du \\ & = \frac{1}{2} \left[ \ln(u+1) - \ln(u+2) \right]_1^4 \\ & = \frac{1}{2} \left[ \ln \left(\frac{u+1}{u+2}\right) \right]_1^4 \\ & = \frac{1}{2} \left[ \ln \left(\frac{5}{6}\right) - \ln \left(\frac{2}{3} \right) \right] \\ & = \frac{1}{2} \ln \left(\frac{5}{4}\right) = \ln \sqrt{\frac{5}{4}} \end{aligned}

a + b = 5 + 4 = 9 \Rightarrow a + b = 5 + 4 = \boxed{9}

Your solutions are always very instructive. Thank you!

Paulo Filho - 5 years, 3 months ago

Log in to reply

Thanks. I always try to do my best.

Chew-Seong Cheong - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...