Integration #1

Calculus Level 3

f ( x ) = x 2 ( 1 + x 2 ) ( 1 + 1 + x 2 ) d x \large f(x)= \int \dfrac{x^2}{(1+x^2)(1+\sqrt{1+x^2})} dx

If f ( 0 ) = 0 f(0)=0 , then f ( 1 ) = ln ( a + b ) π c f(1) = \ln \left(a+\sqrt{b} \right)-\dfrac{\pi}{c} , where a a , b b and c c are positive integers and b b is square-free. Submit your answer as a + b + c a+b+c .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 11, 2018

f ( x ) = x 2 ( 1 + x 2 ) ( 1 + 1 + x 2 ) d x Let x = tan θ d x = sec 2 θ d θ = tan 2 θ sec 2 θ sec 2 θ ( 1 + sec θ ) d θ = sin 2 θ cos 2 θ ( 1 + sec θ ) d θ = 1 cos 2 θ cos θ ( cos θ + 1 ) d θ = ( 1 cos θ ) ( 1 + cos θ ) cos θ ( 1 + cos θ ) d θ = ( sec θ 1 ) d θ = ln ( tan θ + sec θ ) θ + C where C is the constant of integration. f ( 0 ) = ln ( tan 0 + sec 0 ) 0 + C Given that f ( 0 ) = 0 0 = ln ( 1 ) + C C = 0 f ( x ) = ln ( tan θ + sec θ ) θ Putting x = 1 θ = π 4 f ( 1 ) = ln ( tan π 4 + sec π 4 ) π 4 f ( 1 ) = ln ( 1 + 2 ) π 4 \begin{aligned} f(x) & = \int \frac {x^2}{(1+x^2)(1+\sqrt{1+x^2})} dx & \small \color{#3D99F6} \text{Let }x = \tan \theta \implies dx = \sec^2 \theta \ d\theta \\ & = \int \frac {\tan^2 \theta \sec^2 \theta}{\sec^2 \theta (1+\sec \theta)} d \theta \\ & = \int \frac {\sin^2 \theta}{\cos^2 \theta (1+\sec \theta)} d \theta \\ & = \int \frac {1-\cos^2 \theta}{\cos \theta (\cos \theta + 1)} d \theta \\ & = \int \frac {(1-\cos \theta)(1+\cos \theta)}{\cos \theta (1+\cos \theta)} d \theta \\ & = \int \left(\sec \theta - 1\right) d \theta \\ & = \ln (\tan \theta + \sec \theta) - \theta + \color{#3D99F6} C & \small \color{#3D99F6} \text{where }C \text{ is the constant of integration.} \\ f(0) & = \ln (\tan 0 + \sec 0) - 0 + C & \small \color{#3D99F6} \text{Given that }f(0) = 0 \\ 0 & = \ln (1) + C & \small \color{#3D99F6} \implies C = 0 \\ \implies f(x) & = \ln (\tan \theta + \sec \theta) - \theta & \small \color{#3D99F6} \text{Putting }x = 1 \implies \theta = \frac \pi 4 \\ f(1) & = \ln \left(\tan \frac \pi 4 + \sec \frac \pi 4\right) - \frac \pi 4 \\ f(1) & = \ln \left(1 + \sqrt 2 \right) - \frac \pi 4 \end{aligned}

Therefore, a + b + c = 1 + 2 + 4 = 7 a+b+c = 1+2+4 = \boxed{7} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...