∫ 0 π cos x ln ( 1 + cos x ) d x
Find the value of the above definite integral to two decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I ( a ) = ∫ 0 π cos ( x ) ln ( 1 + a ⋅ c o s ( x ) ) d x I ′ ( a ) = ∫ 0 π cos ( x ) 1 ⋅ 1 + a ⋅ c o s ( x ) cos ( x ) d x I ′ ( a ) = ∫ 0 π 1 + a ⋅ c o s ( x ) 1 d x I ′ ( a ) = ∫ 0 ∞ 1 + a 1 + t 2 1 − t 2 1 ⋅ 1 + t 2 2 d t I ′ ( a ) = 2 ∫ 0 ∞ ( 1 + a ) + ( 1 − a ) t 2 d t I ′ ( a ) = 1 + a 2 ∫ 0 ∞ 1 + ( 1 + a 1 − a ⋅ t ) 2 d t I ′ ( a ) = 1 − a 2 2 ∫ 0 ∞ 1 + u 2 d u I ′ ( a ) = 1 − a 2 2 tan − 1 ( u ) ∣ ∣ 0 ∞ = 1 − a 2 π I ( a ) = π sin − 1 ( a ) + C a = 0 ⇒ I ( 0 ) = ∫ 0 π cos ( x ) ln ( 1 ) d x = 0 I ( 0 ) = π sin − 1 ( 0 ) + C = 0 ⇒ C = 0 I ( a ) = π sin − 1 ( a ) I ( 1 ) = ∫ 0 π cos ( x ) ln ( 1 + c o s ( x ) ) d x = π sin − 1 ( 1 ) ∫ 0 π cos ( x ) ln ( 1 + c o s ( x ) ) d x = 2 π 2 ≈ 4 . 9 3 4 8 differentiate both sides with respect to a t = t a n ( 2 x ) , cos ( x ) = 1 + t 2 1 − t 2 , d x = 1 + t 2 2 d t , weierstrass substitution u = 1 + a 1 − a ⋅ t , d t = 1 − a 1 + a ⋅ d u integrate both sides
can someone please do it with power series and then beta function?
Problem Loading...
Note Loading...
Set Loading...
I = ∫ 0 π cos x ln ( 1 + cos x ) d x ⇒ I = ∫ 0 2 π cos x ln ( 1 + cos x ) d x − ∫ 0 2 π cos x ln ( 1 − cos x ) d x ⇒ I = ∫ 0 2 π cos x ln ( 1 − cos x 1 + cos x ) d x ⇒ I = − ∫ 0 2 π cos x ln ( tan 2 2 x ) d x Put tan 2 x = t ⇒ I = − 4 ∫ 0 1 1 − t 2 ln t d t ⇒ I = − 4 ∫ 0 1 ln t k = 0 ∑ ∞ t 2 k d t Switching order of summation and integration, ⇒ I = − 4 k = 0 ∑ ∞ ∫ 0 1 t 2 k ln t d t Now ∫ 0 1 t 2 k ln t d t = − ( 2 k + 1 ) 2 1 ⇒ I = 4 k = 0 ∑ ∞ ( 2 k + 1 ) 2 1 Since k = 0 ∑ ∞ k 2 1 = 6 π 2 , k = 0 ∑ ∞ ( 2 k ) 2 1 = 4 1 k = 0 ∑ ∞ k 2 1 = 2 4 π 2 and k = 0 ∑ ∞ ( 2 k + 1 ) 2 1 = 4 3 k = 0 ∑ ∞ k 2 1 = 8 π 2 ⇒ I = 4 8 π 2 = 2 π 2