Integration

Calculus Level 4

0 π ln ( 1 + cos x ) cos x d x \large \int_0^\pi \dfrac{ \ln (1 + \cos x)} { \cos x} \, dx

Find the value of the above definite integral to two decimal places.


The answer is 4.93.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ankush Tiwari
Sep 26, 2017

I = 0 π ln ( 1 + cos x ) cos x d x I = \large \int_0^\pi \dfrac{ \ln (1 + \cos x)} { \cos x} \, dx I = 0 π 2 ln ( 1 + cos x ) cos x d x 0 π 2 ln ( 1 cos x ) cos x d x \Rightarrow I = \large \int_0^\frac{\pi}{2} \dfrac{ \ln (1 + \cos x)} { \cos x} \, dx - \large \int_0^\frac{\pi}{2} \dfrac{ \ln (1 - \cos x)} { \cos x} \, dx I = 0 π 2 ln ( 1 + cos x 1 cos x ) cos x d x \Rightarrow I = \large \int_0^\frac{\pi}{2} \dfrac{ \ln (\frac{1 + \cos x}{1- \cos x})} { \cos x} \, dx I = 0 π 2 ln ( tan 2 x 2 ) cos x d x \Rightarrow I = -\large \int_0^\frac{\pi}{2} \dfrac{\ln (\tan^2\frac{x}{2})}{ \cos x} \, dx Put tan x 2 = t \tan\frac{x}{2} = t I = 4 0 1 ln t 1 t 2 d t \Rightarrow I = -4\large \int_0^1 \dfrac{\ln t}{1 - t^2} \, dt I = 4 0 1 ln t k = 0 t 2 k d t \Rightarrow I = -4\large \int_0^1 \ln t \sum_{k=0}^{\infty} t^{2k} \, dt Switching order of summation and integration, I = 4 k = 0 0 1 t 2 k ln t d t \Rightarrow I = -4\sum_{k=0}^{\infty}\large \int_0^1 t^{2k}\ln t \, dt Now 0 1 t 2 k ln t d t = 1 ( 2 k + 1 ) 2 \large \int_0^1 t^{2k}\ln t \, dt = -\frac{1}{(2k+1)^2} I = 4 k = 0 1 ( 2 k + 1 ) 2 \Rightarrow I = 4\sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} Since k = 0 1 k 2 = π 2 6 \sum_{k=0}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6} , k = 0 1 ( 2 k ) 2 = 1 4 k = 0 1 k 2 = π 2 24 \sum_{k=0}^{\infty} \frac{1}{(2k)^2} = \frac{1}{4}\sum_{k=0}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{24} and k = 0 1 ( 2 k + 1 ) 2 = 3 4 k = 0 1 k 2 = π 2 8 \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} = \frac{3}{4}\sum_{k=0}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{8} I = 4 π 2 8 = π 2 2 \Rightarrow I = 4\frac{\pi^2}{8} = \frac{\pi^2}{2}

Hassan Abdulla
Jul 22, 2019

I ( a ) = 0 π ln ( 1 + a c o s ( x ) ) cos ( x ) d x I ( a ) = 0 π 1 cos ( x ) cos ( x ) 1 + a c o s ( x ) d x differentiate both sides with respect to a I ( a ) = 0 π 1 1 + a c o s ( x ) d x I ( a ) = 0 1 1 + a 1 t 2 1 + t 2 2 d t 1 + t 2 t = t a n ( x 2 ) , cos ( x ) = 1 t 2 1 + t 2 , d x = 2 d t 1 + t 2 , weierstrass substitution I ( a ) = 2 0 d t ( 1 + a ) + ( 1 a ) t 2 I ( a ) = 2 1 + a 0 d t 1 + ( 1 a 1 + a t ) 2 I ( a ) = 2 1 a 2 0 d u 1 + u 2 u = 1 a 1 + a t , d t = 1 + a 1 a d u I ( a ) = 2 1 a 2 tan 1 ( u ) 0 = π 1 a 2 I ( a ) = π sin 1 ( a ) + C integrate both sides a = 0 I ( 0 ) = 0 π ln ( 1 ) cos ( x ) d x = 0 I ( 0 ) = π sin 1 ( 0 ) + C = 0 C = 0 I ( a ) = π sin 1 ( a ) I ( 1 ) = 0 π ln ( 1 + c o s ( x ) ) cos ( x ) d x = π sin 1 ( 1 ) 0 π ln ( 1 + c o s ( x ) ) cos ( x ) d x = π 2 2 4.9348 \begin{aligned} &I(a)=\int_0^\pi \frac{\ln(1+a\cdot cos(x))}{\cos(x)}\, dx\\ &{I}'(a)=\int_0^\pi \frac{1}{\cos(x)} \cdot \frac{\cos(x)}{1+a\cdot cos(x)}\, dx && {\color{#D61F06} \text{differentiate both sides with respect to a}}\\ &{I}'(a)=\int_0^\pi \frac{1}{1+a\cdot cos(x)}\, dx \\ &{I}'(a)=\int_0^\infty \frac{1}{1+a\frac{1-t^2}{1+t^2}}\cdot \frac{2dt}{1+t^2}&&{\color{#D61F06} t=tan(\frac{x}{2}) \, , \cos(x)=\frac{1-t^2}{1+t^2} \, , dx=\frac{2dt}{1+t^2} , \text{weierstrass substitution}}\\ &{I}'(a)=2\int_0^\infty \frac{dt}{(1+a)+(1-a)t^2}\\ &{I}'(a)=\frac{2}{1+a}\int_0^\infty \frac{dt}{1+\left ( \sqrt{\frac{1-a}{1+a}} \cdot t \right )^2}\\ &{I}'(a)=\frac{2}{\sqrt{1-a^2}}\int_0^\infty \frac{du}{1+u^2} && {\color{#D61F06} u=\sqrt{\frac{1-a}{1+a}} \cdot t, dt=\sqrt{\frac{1+a}{1-a}}\cdot du}\\ &{I}'(a)=\frac{2}{\sqrt{1-a^2}} \left . \tan^{-1}(u) \right |_0^\infty=\frac{\pi}{\sqrt{1-a^2}}\\ &I(a)=\pi \sin^{-1}(a)+C && {\color{#D61F06} \text{integrate both sides}}\\ &\color{#D61F06} a=0 \Rightarrow I(0)=\int_0^\pi \frac{\ln(1)}{\cos(x)}\, dx =0 \\ &\color{#D61F06} I(0)=\pi \sin^{-1}(0)+C = 0 \Rightarrow C=0 \\ &I(a)=\pi \sin^{-1}(a) \\ &I(1)=\int_0^\pi \frac{\ln(1+cos(x))}{\cos(x)}\, dx=\pi \sin^{-1}(1)\\ & \int_0^\pi \frac{\ln(1+cos(x))}{\cos(x)}\, dx= \frac{\pi^2}{2}\approx 4.9348 \end{aligned}

can someone please do it with power series and then beta function?

Βαγγελης Λιαπης - 1 year, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...