Integration

Calculus Level 2

x 2 sin x d x = ? \large \int x^2 \sin x \ dx = \, ?

Clarification : C C denotes the arbitrary constant of integration .

3 cos x sin x + sin 2 x + C 3 \cos x \sin x + \sin^2 x + C 2 x sin x + 2 cos x x 2 cos x + C 2x\sin x + 2\cos x - x^2\cos x + C 2 x sin x + cos x + C 2x \sin x + \cos x + C sin 2 x 9 cos x + tan x + C \sin 2x - 9 \cos x + \tan x + C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jun 14, 2016

By integration by parts:

I = x 2 sin x d x f = sin x , g = x 2 = x 2 cos x + 2 x cos x d x = x 2 cos x + 2 x sin x 2 sin x d x = x 2 cos x + 2 x sin x + 2 cos x + c o n s t a n t = 2 x sin x + 2 cos x x 2 cos x + c o n s t a n t \begin{aligned} I & = \int x^2 \sin x \ dx \quad \quad \small \color{#3D99F6}{f' = \sin x, \ g = x^2} \\ & = - x^2 \cos x + \int 2x \cos x \ dx \\ & = - x^2 \cos x + 2x \sin x - \int 2\sin x \ dx \\ & = - x^2 \cos x + 2x \sin x + 2\cos x + \small \color{grey}{constant} \\ & = \boxed {2x \sin x + 2\cos x - x^2 \cos x + \small \color{grey}{constant}} \end{aligned}

Abdullah Mughal , you have provided a wrong answer earlier. I have edited the problem and the answer options for you.

Chew-Seong Cheong - 5 years ago

Thank you for spotting the mistake.

Abdullah Mughal - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...