Integration

Calculus Level 4

0 π / 4 sin 2 ( 5 θ ) sin 2 ( θ ) cos 2 ( 5 θ ) cos 2 ( θ ) d θ \large \int_{0}^{{\pi} / {4}} \frac{\sin^2(5\theta)}{\sin^2(\theta)} - \frac{\cos^2(5\theta)}{\cos^2(\theta)} \, d\theta

If the integral above can be expressed as a b \dfrac ab , where a a and b b are coprime positive integers, find a + b a+b .


The answer is 23.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I = 0 π 4 sin 2 5 θ sin 2 θ cos 2 5 θ cos 2 θ d θ = 0 π 4 ( sin 5 θ sin θ cos 5 θ cos θ ) ( sin 5 θ sin θ + cos 5 θ cos θ ) d θ = 0 π 4 ( sin 5 θ cos θ cos 5 θ sin θ ) ( sin 5 θ cos θ + cos 5 θ sin θ ) sin 2 θ cos 2 θ d θ = 0 π 4 4 sin 4 θ sin 6 θ sin 2 2 θ d θ = 0 π 4 8 sin 2 θ cos 2 θ ( 3 sin 2 θ 4 sin 3 2 θ ) sin 2 2 θ d θ = 0 π 4 8 cos 2 θ ( 3 4 sin 2 2 θ ) d θ Let x = sin 2 θ , d x = 2 cos 2 θ d θ = 0 1 4 ( 3 4 x 2 ) d x = 12 x 16 x 3 3 0 1 = 12 16 3 = 20 3 \begin{aligned} I & = \int_0^\frac \pi 4 \frac {\sin^2 5\theta}{\sin^2 \theta} - \frac {\cos^2 5\theta}{\cos^2 \theta} d \theta \\ & = \int_0^\frac \pi 4 \left(\frac {\sin 5\theta}{\sin \theta} - \frac {\cos 5\theta}{\cos \theta} \right) \left(\frac {\sin 5\theta}{\sin \theta} + \frac {\cos 5\theta}{\cos \theta} \right) d \theta \\ & = \int_0^\frac \pi 4 \frac {(\sin 5\theta \cos \theta - \cos 5 \theta \sin \theta)(\sin 5\theta \cos \theta + \cos 5 \theta \sin \theta)}{\sin^2 \theta \cos^2 \theta} d \theta \\ & = \int_0^\frac \pi 4 \frac {4\sin 4\theta \sin 6\theta }{\sin^2 2\theta} d \theta \\ & = \int_0^\frac \pi 4 \frac {8\sin 2\theta \cos 2\theta (3\sin 2\theta - 4 \sin^3 2 \theta)}{\sin^2 2\theta} d \theta \\ & = \int_0^\frac \pi 4 8 \cos 2\theta (3 - 4 \sin^2 2 \theta) \ d \theta \quad \quad \small \color{#3D99F6}{\text{Let }x = \sin 2\theta, \ dx = 2 \cos 2\theta \ d \theta} \\ & = \int_0^1 4(3-4x^2) \ dx \\ & = 12x -\frac {16x^3}3 \bigg|_0^1 = 12 - \frac {16}3 = \frac {20}3 \end{aligned}

a + b = 20 + 3 = 23 \implies a+b = 20+3 = \boxed{23}

Rocco Dalto
Oct 2, 2016

By Euler's formula: e ( i 5 θ ) = e ( i θ ) 5 {\bf e^(i5\theta) = e^(i\theta)^5 \implies }

c o s ( 5 θ ) + i s i n ( 5 θ ) = ( c o s θ + i s i n θ ) 5 = {\bf cos(5\theta) + isin(5\theta) = (cos\theta + isin\theta)^5 = }

c o s 5 θ + 5 c o s 4 θ s i n θ i 10 c o s 3 θ s i n 2 θ 10 c o s 2 θ s i n 3 θ i + 5 c o s θ s i n 4 θ + s i n 5 θ i {\bf cos^5\theta + 5cos^4\theta sin\theta i - 10 cos^3\theta sin^2\theta - 10cos^2\theta sin^3\theta i + 5 cos\theta sin^4\theta + sin^5\theta i \implies }

c o s ( 5 θ ) = c o s θ ( c o s 4 θ 10 c o s 2 θ s i n 2 θ + 5 s i n 4 θ ) = {\bf cos(5\theta) = cos\theta (cos^4\theta - 10 cos^2\theta sin^2\theta + 5 sin^4\theta) = }

c o s θ 4 ( ( 1 + c o s ( 2 θ ) ) 2 10 ( 1 c o s 2 ( 2 θ ) ) + 5 ( 1 c o s ( 2 θ ) ) = {\bf \frac{cos\theta}{4} ((1 + cos(2\theta))^2 - 10 (1 - cos^2(2\theta)) + 5 (1 - cos(2\theta)) = }

c o s θ 4 ( 16 c o s 2 ( 2 θ ) 8 c o s ( 2 θ ) 4 ) = {\bf \frac{cos\theta}{4} (16 cos^2(2\theta) - 8 cos(2\theta) - 4) = }

c o s θ ( 4 c o s 2 ( 2 θ ) 2 c o s ( 2 θ ) 1 ) = {\bf cos\theta (4 cos^2(2\theta) - 2 cos(2\theta) - 1) = }

c o s θ ( 2 ( 1 + c o s ( 4 θ ) ) 2 c o s ( 2 θ ) 1 ) = {\bf cos\theta (2(1 + cos(4\theta)) - 2 cos(2\theta) - 1) = }

c o s θ ( 2 c o s ( 4 θ ) 2 c o s ( 2 θ ) + 1 ) {\bf cos\theta (2 cos(4\theta) - 2 cos(2\theta) + 1) }

In a similiar fashion:

s i n ( 5 θ ) = s i n θ ( 2 c o s ( 4 θ ) + 2 c o s ( 2 θ ) + 1 ) {\bf sin(5\theta) = sin\theta (2 cos(4\theta) + 2 cos(2\theta) + 1) }

{\bf \implies }

s i n 2 ( 5 θ ) s i n 2 ( θ ) c o s 2 ( 5 θ ) c o s 2 ( θ ) = \large \frac{sin^2(5\theta)}{sin^2(\theta)} - \frac{cos^2(5\theta)}{cos^2(\theta)} =

( 2 c o s ( 4 θ ) + 2 c o s ( 2 θ ) + 1 ) 2 ( 2 c o s ( 4 θ ) 2 c o s ( 2 θ ) + 1 ) 2 = {\bf (2 cos(4\theta) + 2 cos(2\theta) + 1)^2 - (2 cos(4\theta) - 2 cos(2\theta) + 1)^2 = }

8 c o s ( 2 θ ) ( 2 c o s ( 4 θ ) + 1 ) = {\bf 8 cos(2\theta) (2 cos(4\theta) + 1) = }

8 c o s ( 2 θ ) ( 2 ( 2 c o s 2 ( 2 θ ) 1 ) + 1 ) = 8 c o s ( 2 θ ) ( 4 c o s 2 ( 2 θ ) 1 ) = {\bf 8 cos(2\theta) ( 2 (2 cos^2(2\theta) - 1) + 1) = 8 cos(2\theta) (4 cos^2(2\theta) - 1) = }

8 ( 4 c o s 3 ( 2 θ ) c o s ( 2 θ ) = 8 ( 4 ( 1 s i n 2 ( 2 θ ) ) c o s ( 2 θ ) c o s ( 2 θ ) ) = {\bf 8 (4 cos^3(2\theta) - cos(2\theta) = 8(4(1 - sin^2(2\theta))cos(2\theta) - cos(2\theta)) = }

8 ( 3 c o s ( 2 θ ) 4 ( s i n ( 2 θ ) 2 c o s ( 2 θ ) ) {\bf 8(3 cos(2\theta) - 4(sin(2\theta)^2 cos(2\theta)) \implies }

0 π 4 s i n 2 ( 5 θ ) s i n 2 ( θ ) c o s 2 ( 5 θ ) c o s 2 ( θ ) d θ = \large \int_{0}^{\frac{\pi}{4}} \frac{sin^2(5\theta)}{sin^2(\theta)} - \frac{cos^2(5\theta)}{cos^2(\theta)} d\theta =

12 0 π 4 c o s ( 2 θ ) 2 d θ {\bf 12 * \int_{0}^{\frac{\pi}{4}} cos(2\theta) * 2 d\theta } 16 0 π 4 ( s i n ( 2 θ ) ) 2 2 c o s ( 2 θ ) d θ = {\bf - 16 * \int_{0}^{\frac{\pi}{4}} (sin(2\theta))^2 2 cos(2\theta) d\theta = }

12 s i n ( 2 θ ) 16 3 ( s i n ( 2 θ ) ) 3 0 π 4 = {\bf 12 sin(2\theta) - \frac{16}{3} (sin(2\theta))^3|_{0}^{\frac{\pi}{4}} = }

12 16 3 = 20 3 = a b a + b = 23. {\bf 12 - \frac{16}{3} = \frac{20}{3} = \frac{a}{b} \implies a + b = 23.}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...