Integration-2

Calculus Level 4

If d x ( sin x ) ( cos x ) 2 \large \displaystyle \int{\dfrac{dx}{(\sin x)(\cos x)^2}} is equal to

a b sec x + c d ln tan x e + z \dfrac{a}{b} \sec x +\dfrac{c}{d} \ln \tan \dfrac{x}{e}+z where z z is integration constant where a , b , c , d a,b,c,d are least possible natural numbers.

Then the value of a + b + c + d + e a+b+c+d+e is

For more problems try my set


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akshay Sharma
Mar 12, 2016
  • d x ( s i n x ) ( c o s x ) 2 \large \int{\frac{dx}{(sin x)(cos x)^2}}
  • ( 1 ) d x ( s i n x ) ( c o s x ) 2 \Rightarrow\int{\frac{(1) dx}{(sin x)(cos x)^2}}
  • \Rightarrow We can write 1 = ( s i n x ) 2 + ( c o s x ) 2 1=(sin x)^2+(cos x)^2
  • ( s i n x ) 2 + ( c o s x ) 2 d x ( s i n x ) ( c o s x ) 2 \Rightarrow\int{\frac{(sin x)^2+(cos x)^2 dx}{(sin x)(cos x)^2}}
  • ( s e c x ) ( t a n x ) d x + ( c o s e c x ) ( d x ) \Rightarrow\int{(sec x)(tan x) dx}+\int{(cosec x)(dx)}
  • s e c x + l n t a n x x 2 + z \Rightarrow sec x+ln tan x\frac{x}{2}+z
  • a = b = c = d = 1 \Rightarrow a=b=c=d=1 & e = 2 e=2
  • a + b + c + d + e = 6 \Rightarrow a+b+c+d+e=6

In Question you have not mentioned lntanx (you write tanx only)

Yash Dev Lamba - 5 years, 3 months ago

Log in to reply

yup! I have edited it.

Akshay Sharma - 5 years, 3 months ago

Just for the sake of variety, the integrand can be simplified by the following ways too :

  1. Write 1 cos 2 ( x ) \large \frac{1}{ \cos^2 (x)} as sec 2 x = 1 + tan 2 x \large \sec^2 x = 1 + \tan^2 x .

OR

  1. Rewrite cos 2 x = 1 sin 2 x \large \cos^2 x = 1 - \sin^2 x . Rewrite numerator as sin 2 x + 1 sin 2 x \large \sin^2 x + 1 - \sin^2 x .

Both ways yields the result sec x tan x + c o s e c x \large \sec x \tan x + \ cosec x once simplified.

Pulkit Gupta - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...