integration 5

Calculus Level 3

0 2 ( lim n k = 1 n ( n + k ) 2 + k = 1 lim n n ( n + k ) 2 ) d x = ? \int_0^2 \left(\lim_{n \to \infty} \sum_{k=1}^\infty \frac n{(n+k)^2} + \sum_{k=1}^\infty \lim_{n \to \infty} \frac n{(n+k)^2} \right) dx = \ ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 18, 2020

I = 0 2 ( lim n k = 1 n ( n + k ) 2 + k = 1 lim n n ( n + k ) 2 ) d x A / case, L’H o ˆ pital’s rule applies. = 0 2 ( lim n k = 1 1 n ( 1 + k n ) 2 + k = 1 lim n 1 2 ( n + k ) ) d x Differentiate up and down w.r.t. n = 0 2 ( 0 1 1 ( 1 + x ) 2 d x + k = 1 0 ) d x By Riemann sums = 0 2 [ 1 1 + x ] 1 0 d x = 0 2 1 2 d x = x 2 0 2 = 1 \begin{aligned} I & = \int_0^2 \left(\lim_{n \to \infty} \sum_{k=1}^\infty \frac n{(n+k)^2} + \sum_{k=1}^\infty \blue{\lim_{n \to \infty} \frac n{(n+k)^2}} \right) dx & \small \blue{\text{A }\infty/\infty \text{ case, L'Hôpital's rule applies.}} \\ & = \int_0^2 \left(\red{\lim_{n \to \infty} \sum_{k=1}^\infty \frac 1{n\left(1+\frac kn \right)^2}} + \sum_{k=1}^\infty \blue{\lim_{n \to \infty} \frac 1{2(n+k)}} \right) dx & \small \blue{\text{Differentiate up and down w.r.t. }n} \\ & = \int_0^2 \left(\red{\int_0^1 \frac 1{(1+x)^2} dx} + \sum_{k=1}^\infty \blue{0} \right) dx & \small \red{\text{By Riemann sums}} \\ & = \int_0^2 \red{\left[\frac 1{1+x} \right]_1^0} dx = \int_0^2 \frac 12 \ dx = \frac x2 \ \bigg|_0^2 = \boxed 1 \end{aligned}

References:

The sum k = 1 1 n ( 1 + k n ) 2 \sum_{k = 1}^\infty \frac{1}{n (1 + \frac{k}{n})^2} is actually the Riemann sum for the integral 0 1 ( 1 + x ) 2 = 1. \int_0^\infty \frac{1}{(1 + x)^2} = 1. This means the answer is 2.

Jon Haussmann - 1 year ago
Karan Chatrath
Apr 16, 2020

Consider the sum:

lim n k = 1 n n ( n + k ) 2 = S 1 \lim_{n \to \infty} \sum_{k=1}^{n} \frac{n}{(n+k)^2} = S_1

lim n k = 1 n 1 n ( 1 + k n ) 2 = S 1 \implies \lim_{n \to \infty}\sum_{k=1}^{n} \frac{\frac{1}{n}}{\left(1+\frac{k}{n}\right)^2}=S_1

Take 1 / n = d x 1/n = dx and k / n = x k/n=x This transforms the sum to the following integral as n tends to infinity:

S 1 = 0 1 d x ( 1 + x ) 2 = 1 2 S_1 = \int_{0}^{1}\frac{dx}{(1+x)^2}=\frac{1}{2}

Again, consider the sum:

k = 1 lim n n ( n + k ) 2 = S 2 \sum_{k=1}^{\infty} \lim_{n \to \infty} \frac{n}{(n+k)^2} = S_2

S 2 = k = 1 ( lim n 1 n ( 1 + k n ) 2 ) S_2 = \sum_{k=1}^{\infty} \left(\lim_{n \to \infty} \frac{\frac{1}{n}}{\left(1+\frac{k}{n}\right)^2}\right) S 2 = k = 1 0 S_2 =\sum_{k=1}^{\infty} 0 lim n 1 n ( 1 + k n ) 2 = 0 \because \lim_{n \to \infty} \frac{\frac{1}{n}}{\left(1+\frac{k}{n}\right)^2}=0 S 2 = 0 \implies S_2 = 0

Therefore:

0 2 ( S 1 + S 2 ) d x = 1 \int_{0}^{2}\left(S_1 + S_2\right)dx=1

See the upper limit for the sum definition that I have used for S 1 S_1 . I think that is the correct notation rather than what is used in the problem statement.

In S 1 S1 the sum inside the limit is not from 1 1 to n n and that changes everything ! The true answer (the true result of what is given in the problem) is 2. Either there is a typo in the problem, either the answer 1 is wrong and should be 2.

Théo Leblanc - 1 year, 1 month ago

2 pending reports

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...