Integration 25

Calculus Level 4

0 2 π sin ( x ) sin ( 2 x ) sin ( 3 x ) sin ( 4 x ) d x = ? \large \int_0^{2\pi} \sin(x) \sin(2x) \sin(3x) \sin(4x)\ dx = \ ?


The answer is 0.78540.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 19, 2020

We can simplify the integrand using identities 2 sin A sin B = cos ( A B ) cos ( A + B ) 2 \sin A \sin B = \cos (A-B) - \cos (A+B) and 2 cos A cos B = cos ( A B ) + cos ( A + B ) 2 \cos A \cos B = \cos (A-B) + \cos (A+B) .

I = 0 2 π sin x sin 2 x sin 3 x sin 4 x d x = 0 2 π ( cos x cos 3 x ) ( cos x cos 7 x ) 4 d x = 1 4 0 2 π ( cos 2 x cos x cos 3 x cos x cos 7 x + cos 3 x cos 7 x ) d x = 1 4 0 2 π 1 2 ( ( 1 + cos 2 x ) cos 2 x cos 5 x cos 6 x cos 8 x + cos 4 x + cos 10 x ) d x Note that 0 2 π cos n x d x = 0 = 1 8 0 2 π d x = x 8 0 2 π = π 4 0.785 where n is an integer. \begin{aligned} I & = \int_0^{2\pi} \sin x \sin 2x \sin 3x \sin 4x\ dx \\ & = \int_0^{2\pi} \frac {(\cos x - \cos 3x) (\cos x - \cos 7x)}4 dx \\ & = \frac 14 \int_0^{2\pi} \left(\cos^2 x - \cos x \cos 3x - \cos x \cos 7 x + \cos 3x \cos 7x \right) dx \\ & = \frac 14 \int_0^{2\pi} \frac 12 \left(\left(1+\cos 2x\right) - \cos 2x - \cos 5x - \cos 6x - \cos 8 x + \cos 4x + \cos 10x \right) dx & \small \blue{\text{Note that }\int_0^{2\pi} \cos nx \ dx = 0} \\ & = \frac 18 \int_0^{2\pi} dx = \frac x8 \ \bigg|_0^{2\pi} = \frac \pi 4 \approx \boxed{0.785} & \small \blue{\text{where }n \text{ is an integer.}} \end{aligned}

The factor of 1 2 \frac12 should apply to all terms in the integrand in the next to last line: 1 2 ( 1 + cos 2 x cos 2 x cos 4 x cos 6 x cos 8 x + cos 4 x + cos 10 x ) \frac12 (1 + \cos 2x - \cos 2x - \cos 4x - \cos 6x - \cos 8x + \cos 4x + \cos 10x ) . With these limits, all terms other than the constant integrate to zero anyway, so the final result of π 4 \frac{\pi}{4} is unaffected.

Matthew Feig - 10 months, 3 weeks ago

Log in to reply

Thanks. I just wrongly placed it.

Chew-Seong Cheong - 10 months, 3 weeks ago

Log in to reply

Yeah, it looked that way. Your use of trig identities was much more efficient than mine!

Matthew Feig - 10 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...