This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
A simpler solution suggested by @Pi Han Goh using hyperbolic trigonometric function substitutions.
I = ∫ 2 3 ( x + 1 ) x − 2 x + 2 d x = ∫ 0 1 2 ( u 2 + 3 ) u 2 + 4 d u = ∫ 0 ln φ 8 ( 4 sinh 2 t + 3 ) cosh 2 t d t = ∫ 0 ln φ ( 8 sinh 2 2 t + 1 2 cosh 2 t + 1 2 ) d t = ∫ 0 ln φ ( 4 cosh 4 t + 1 2 cosh 2 t + 8 ) d t = sinh 4 t + 6 sinh 2 t + 8 t ∣ ∣ ∣ ∣ 0 ln φ = 2 1 ( φ 4 − φ 4 1 ) + 3 ( φ 2 − φ 2 1 ) + 8 ln φ = 2 1 ( 3 φ + 2 − 5 + 3 φ ) + 3 ( φ + 1 − 2 + φ ) + 8 ln φ = 9 φ − 2 9 + 8 ln φ = 2 9 5 + 8 ln φ ≈ 1 3 . 9 Let u 2 = x − 2 ⟹ 2 u d u = d x Let sinh t = 2 u ⟹ cosh t d t = 2 d u and sinh − 1 2 1 = ln ( 2 1 + 2 5 ) = ln φ , where φ denotes the golden ratio.
I = ∫ 2 3 ( x + 1 ) x − 2 x + 2 d x = ∫ 0 1 2 ( u 2 + 3 ) u 2 + 4 d u = ∫ 0 tan − 1 2 1 8 ( 4 tan 2 θ + 3 ) sec 3 θ d θ = ∫ 0 tan − 1 2 1 8 ( 4 sec 2 θ − 1 ) sec 3 θ d θ = 3 2 ∫ 0 tan − 1 2 1 sec 5 θ d θ − 8 ∫ 0 tan − 1 2 1 sec 3 θ d θ = 3 2 ( 4 tan θ sec 3 θ ∣ ∣ ∣ ∣ 0 tan − 1 2 1 + 4 3 ∫ 0 tan − 1 2 1 sec 3 θ d θ ) − 8 ∫ 0 tan − 1 2 1 sec 3 θ d θ = 2 5 5 + 1 6 ∫ 0 tan − 1 2 1 sec 3 θ d θ = 2 5 5 + 8 tan θ sec θ ∣ ∣ ∣ ∣ 0 tan − 1 2 1 + 8 ∫ 0 tan − 1 2 1 sec θ d θ = 2 5 5 + 2 5 + 8 ∫ 0 tan − 1 2 1 tan θ + sec θ tan θ sec θ + sec 2 θ d θ = 2 9 5 + 8 ln ( tan θ + sec θ ) ∣ ∣ ∣ ∣ 0 tan − 1 2 1 = 2 9 5 + 8 ln ( 2 1 + 2 5 ) ≈ 1 3 . 9 Let u 2 = x − 2 ⟹ 2 u d u = d x Let tan θ = 2 u ⟹ sec 2 θ d θ = 2 d u By reduction formula (see note) By reduction formula again
Reduction formula: ∫ sec n x d x = n − 1 tan x sec n − 2 x + n − 1 n − 2 ∫ sec 3 x d x