integration 25

Calculus Level 2

2 3 ( x + 1 ) x + 2 x 2 d x = ? \large \int_2^3 (x+1)\sqrt{\frac {x+2}{x-2}} dx = \ ?


The answer is 13.912.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 19, 2020

A simpler solution suggested by @Pi Han Goh using hyperbolic trigonometric function substitutions.

I = 2 3 ( x + 1 ) x + 2 x 2 d x Let u 2 = x 2 2 u d u = d x = 0 1 2 ( u 2 + 3 ) u 2 + 4 d u Let sinh t = u 2 cosh t d t = d u 2 = 0 ln φ 8 ( 4 sinh 2 t + 3 ) cosh 2 t d t and sinh 1 1 2 = ln ( 1 2 + 5 2 ) = ln φ , = 0 ln φ ( 8 sinh 2 2 t + 12 cosh 2 t + 12 ) d t where φ denotes the golden ratio. = 0 ln φ ( 4 cosh 4 t + 12 cosh 2 t + 8 ) d t = sinh 4 t + 6 sinh 2 t + 8 t 0 ln φ = 1 2 ( φ 4 1 φ 4 ) + 3 ( φ 2 1 φ 2 ) + 8 ln φ = 1 2 ( 3 φ + 2 5 + 3 φ ) + 3 ( φ + 1 2 + φ ) + 8 ln φ = 9 φ 9 2 + 8 ln φ = 9 5 2 + 8 ln φ 13.9 \begin{aligned} I & = \int_2^3 (x+1)\sqrt{\frac {x+2}{x-2}} dx & \small \blue{\text{Let }u^2 = x-2 \implies 2u\ du = dx} \\ & = \int_0^1 2(u^2+3) \sqrt{u^2 + 4} \ du & \small \blue{\text{Let }\sinh t = \frac u2 \implies \cosh t \ dt = \frac {du}2} \\ & = \int_0^{\ln \varphi} 8(4\sinh^2 t + 3)\cosh^2 t \ dt & \small \blue{\text{and }\sinh^{-1} \frac 12 = \ln \left(\frac 12 + \frac {\sqrt 5}2 \right) = \ln \varphi,} \\ & = \int_0^{\ln \varphi} \left(8\sinh^2 2t + 12\cosh 2t + 12 \right) dt & \small \blue{\text{where }\varphi \text{ denotes the golden ratio.}} \\ & = \int_0^{\ln \varphi} \left(4\cosh 4t + 12\cosh 2t + 8 \right) dt \\ & = \sinh 4t + 6 \sinh 2t + 8t \ \bigg|_0^{\ln \varphi} \\ & = \frac 12 \left(\varphi^4 - \frac 1{\varphi^4} \right) + 3 \left(\varphi^2 - \frac 1{\varphi^2} \right) + 8 \ln \varphi \\ & = \frac 12 \left(3 \varphi + 2 - 5 + 3\varphi \right) + 3 \left(\varphi + 1 - 2 + \varphi \right) + 8 \ln \varphi \\ & = 9\varphi - \frac 92 + 8\ln \varphi = \frac {9\sqrt 5}2 + 8 \ln \varphi \approx \boxed{13.9} \end{aligned}


I = 2 3 ( x + 1 ) x + 2 x 2 d x Let u 2 = x 2 2 u d u = d x = 0 1 2 ( u 2 + 3 ) u 2 + 4 d u Let tan θ = u 2 sec 2 θ d θ = d u 2 = 0 tan 1 1 2 8 ( 4 tan 2 θ + 3 ) sec 3 θ d θ = 0 tan 1 1 2 8 ( 4 sec 2 θ 1 ) sec 3 θ d θ = 32 0 tan 1 1 2 sec 5 θ d θ 8 0 tan 1 1 2 sec 3 θ d θ By reduction formula (see note) = 32 ( tan θ sec 3 θ 4 0 tan 1 1 2 + 3 4 0 tan 1 1 2 sec 3 θ d θ ) 8 0 tan 1 1 2 sec 3 θ d θ = 5 5 2 + 16 0 tan 1 1 2 sec 3 θ d θ By reduction formula again = 5 5 2 + 8 tan θ sec θ 0 tan 1 1 2 + 8 0 tan 1 1 2 sec θ d θ = 5 5 2 + 2 5 + 8 0 tan 1 1 2 tan θ sec θ + sec 2 θ tan θ + sec θ d θ = 9 5 2 + 8 ln ( tan θ + sec θ ) 0 tan 1 1 2 = 9 5 2 + 8 ln ( 1 2 + 5 2 ) 13.9 \begin{aligned} I & = \int_2^3 (x+1)\sqrt{\frac {x+2}{x-2}} dx & \small \blue{\text{Let }u^2 = x-2 \implies 2u\ du = dx} \\ & = \int_0^1 2(u^2+3) \sqrt{u^2 + 4} \ du & \small \blue{\text{Let }\tan \theta = \frac u2 \implies \sec^2 \theta \ d\theta = \frac {du}2} \\ & = \int_0^{\tan^{-1} \frac 12} 8(4 \tan^2 \theta + 3) \sec^3 \theta \ d\theta \\ & = \int_0^{\tan^{-1} \frac 12} 8(4 \sec^2 \theta - 1) \sec^3 \theta \ d\theta \\ & = 32 \blue{\int_0^{\tan^{-1} \frac 12} \sec^5 \theta \ d\theta} - 8 \int_0^{\tan^{-1} \frac 12} \sec^3 \theta \ d\theta & \small \blue{\text{By reduction formula (see note)}} \\ & = 32 \left(\blue{\frac {\tan \theta \sec^3 \theta}4\ \bigg|_0^{\tan^{-1} \frac 12} + \frac 34 \int_0^{\tan^{-1} \frac 12} \sec^3 \theta \ d\theta} \right) - 8 \int_0^{\tan^{-1} \frac 12} \sec^3 \theta \ d\theta \\ & = \frac {5\sqrt 5}2 + 16 \int_0^{\tan^{-1} \frac 12} \sec^3 \theta \ d \theta & \small \blue{\text{By reduction formula again}} \\ & = \frac {5\sqrt 5}2 + 8 \tan \theta \sec \theta \ \bigg|_0^{\tan^{-1} \frac 12} + 8 \int_0^{\tan^{-1} \frac 12} \sec \theta \ d \theta \\ & = \frac {5\sqrt 5}2 + 2\sqrt 5 + 8 \int_0^{\tan^{-1} \frac 12} \frac {\tan \theta \sec \theta + \sec^2 \theta}{\tan \theta + \sec \theta} d\theta \\ & = \frac {9\sqrt 5}2 + 8 \ln (\tan \theta + \sec \theta) \ \bigg|_0^{\tan^{-1} \frac 12} \\ & = \frac {9\sqrt 5}2 + 8 \ln \left(\frac 12 + \frac {\sqrt 5}2 \right) \approx \boxed{13.9} \end{aligned}


Reduction formula: sec n x d x = tan x sec n 2 x n 1 + n 2 n 1 sec 3 x d x \displaystyle \int \sec^n x\ dx = \frac {\tan x \sec^{n-2} x}{n-1} + \frac {n-2}{n-1} \int \sec^3 x \ dx

Fantastic trigonometric substitution solution.

FYI, your solution can be shorter if you use hyperbolic trigonometric substitution instead.

Pi Han Goh - 10 months, 3 weeks ago

Log in to reply

Thanks a lot. Are you keeping well in this pandemic? Working?

Chew-Seong Cheong - 10 months, 3 weeks ago

Log in to reply

Yuppers. Still doing fine, isolated most of the time. Yeah, work from home.

I'm glad to see your solutions all the time. It allows me to verify that my working is correct instantaneously. Very much appreciated.

Pi Han Goh - 10 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...