Integration #4

Calculus Level 5

I = 0 π e cos x sin x ( 2 sin ( 1 2 cos x ) + 3 cos ( 1 2 cos x ) ) d x I=\int^{\pi}_{0}e^{|\cos x|}\sin x \left( 2\sin\left(\frac{1}{2}\cos x \right) +3\cos \left(\frac{1}{2} \cos x \right)\right) dx

Find the value of I \lfloor I \rfloor . You may use calculator at the end to find your answer.

Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 16, 2018

I = 0 π e cos x sin x ( 2 sin ( cos x 2 ) + 3 cos ( cos x 2 ) ) d x Let 2 u = cos x 2 d u = sin x d x = 2 1 2 1 2 e 2 u ( 2 sin u + 3 cos u ) d u Using a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 1 2 ( e 2 u ( 2 sin u + 3 cos u ) + e 2 u ( 2 sin u + 3 cos u ) ) d u = 6 1 2 1 2 e 2 u cos u d u Since the integral is even = 12 0 1 2 e 2 u cos u d u By integration by parts = 12 [ e 2 u sin u + 2 e 2 u cos u ] 0 1 2 48 0 1 2 e 2 u cos u d u = 12 ( e sin 1 2 + 2 e cos 1 2 2 ) 4 I = 12 5 ( e sin 1 2 + 2 e cos 1 2 2 ) 9.77819326 \begin{aligned} I & = \int_0^\pi e^{|\cos x|} \sin x \left(2\sin \left(\frac {\cos x}2\right) + 3 \cos \left(\frac {\cos x}2\right)\right) dx & \small \color{#3D99F6} \text{Let }2u = \cos x \implies 2du = - \sin x \ dx \\ & = 2 \int_{-\frac 12}^\frac 12 e^{|2u|} \left(2\sin u + 3 \cos u \right) du & \small \color{#3D99F6} \text{Using }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \int_{-\frac 12}^\frac 12 \left(e^{|2u|} \left(2\sin u + 3 \cos u \right) + e^{|-2u|} \left(-2\sin u + 3 \cos u \right) \right) du \\ & = 6 \int_{-\frac 12}^\frac 12 e^{|2u|} \cos u \ du & \small \color{#3D99F6} \text{Since the integral is even} \\ & = 12 \int_0^\frac 12 e^{2u} \cos u \ du & \small \color{#3D99F6} \text{By integration by parts} \\ & = 12 \bigg[e^{2u} \sin u + 2e^{2u} \cos u\bigg]_0^\frac 12 - \color{#3D99F6} 48 \int_0^\frac 12 e^{2u} \cos u \ du \\ & = 12 \left(e \sin \frac 12 + 2e \cos \frac 12 - 2 \right) - \color{#3D99F6} 4I \\ & = \frac {12}5 \left(e \sin \frac 12 + 2e \cos \frac 12 - 2 \right) \\ & \approx 9.77819326 \end{aligned}

Therefore, I = 9 \lfloor I \rfloor = \boxed{9} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...