Integration 44

Calculus Level 3

0 1 x 7 x 3 ln x d x = ? \int_0^1 \frac {x^7-x^3}{\ln x} dx = ?


The answer is 0.693.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Vincent Moroney
Jun 3, 2018

Notice that 3 7 x t d t = x 7 x 3 ln ( x ) \displaystyle\int_3^7 x^t\,dt = \frac{x^7-x^3}{\ln(x)} so we have 0 1 x 7 x 3 ln ( x ) d x = 0 1 3 7 x t d t d x \displaystyle\int_0^1 \frac{x^7-x^3}{\ln(x)} \,dx =\displaystyle\int_0^1\displaystyle\int_3^7x^t\,dt\,dx then using Fubini's theorem we interchange the order of integration to give 3 7 0 1 x t d x d t \displaystyle\int_3^7\displaystyle\int_0^1x^t\,dx\,dt which reduces to 3 7 1 t + 1 d t \displaystyle\int_3^7 \frac{1}{t+1}\,dt which is easily evaluated as ln ( t + 1 ) t = 3 t = 7 = ln ( 8 ) ln ( 4 ) = ln ( 2 ) \ln(t+1)\big|_{t=3}^{t=7} = \ln(8)-\ln(4) = \ln(2)

Wow another amazing post by my favorite proctor. Dr Moroney you never fail to surprised me with your well-thought out solutions. I look forward to reading more of your solutions. Regards Mr Strawberry.

Isaiah Strawberry - 3 years ago
Joseph Newton
May 26, 2018

Let I a = 0 1 x 7 a x 3 a ln x d x d d a I a = 0 1 d d a x 7 a x 3 a ln x d x by differentiation under the integral sign = 0 1 7 x 7 a ln x 3 x 3 a ln x ln x d x = 0 1 ( 7 x 7 a 3 x 3 a ) d x = [ 7 x 7 a + 1 7 a + 1 3 x 3 a + 1 3 a + 1 ] 0 1 = 7 7 a + 1 3 3 a + 1 I a = ( 7 7 a + 1 3 3 a + 1 ) d a = ln ( 7 a + 1 ) ln ( 3 a + 1 ) + C Now, when a = 0 , I 0 = 0 , as 0 1 x 0 x 0 ln x = 0 So 0 = ln ( 0 + 1 ) ln ( 0 + 1 ) + C C = 0 I a = ln ( 7 a + 1 ) ln ( 3 a + 1 ) I 1 = ln ( 7 + 1 ) ln ( 3 + 1 ) 0 1 x 7 x 3 ln x d x = ln ( 2 ) 0.693 \begin{aligned}\text{Let } I_a&=\int_0^1\frac{x^{7a}-x^{3a}}{\ln x}dx\\ \therefore\frac{d}{da}I_a&=\int_0^1\frac{d}{da}\frac{x^{7a}-x^{3a}}{\ln x}dx\quad\text{by differentiation under the integral sign}\\ &=\int_0^1\frac{7x^{7a}\ln x-3x^{3a}\ln x}{\ln x}dx\\ &=\int_0^1\left(7x^{7a}-3x^{3a}\right)dx\\ &=\left[\frac{7x^{7a+1}}{7a+1}-\frac{3x^{3a+1}}{3a+1}\right]_0^1\\ &=\frac{7}{7a+1}-\frac{3}{3a+1}\\ \therefore I_a&=\int\left(\frac{7}{7a+1}-\frac{3}{3a+1}\right)da\\ &=\ln(7a+1)-\ln(3a+1)+C\\ &\text{Now, when }a=0,\,I_0=0,\,\text {as }\int_0^1\frac{x^0-x^0}{\ln x}=0\\ \text{So }0&=\ln(0+1)-\ln(0+1)+C\\ \therefore C&=0\\ \therefore I_a&=\ln(7a+1)-\ln(3a+1)\\ \therefore I_1&=\ln(7+1)-\ln(3+1)\\ \therefore\int_0^1\frac{x^7-x^3}{\ln x}dx&=\boxed{\ln(2)\approx 0.693}\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...