Integration #5

Calculus Level 4

0 1 ( k = 1 n ( x + k ) ) ( r = 1 n 1 x + r ) d x \int^{1}_{0}\left(\prod^{n}_{k=1}(x+k)\right)\left(\sum^{n}_{r=1}\dfrac{1}{x+r}\right) dx

n ! n! n . n ! n.n! ( n + 1 ) ! (n+1)! n n

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jan 16, 2018

Let f ( x ) = k = 1 n ( x + k ) f(x) = \displaystyle \prod_{k=1}^n (x+k) , then:

f ( x ) = ( x + 1 ) ( x + 2 ) ( x + 3 ) ( x + n ) f ( x ) = ( x + 2 ) ( x + 3 ) ( x + 4 ) ( x + n ) + ( x + 1 ) ( x + 3 ) ( x + 4 ) ( x + n ) + ( x + 1 ) ( x + 2 ) ( x + 4 ) ( x + n ) + + ( x + 1 ) ( x + 2 ) ( x + 3 ) ( x + n 1 ) = k = 1 n ( x + k ) x + 1 + k = 1 n ( x + k ) x + 2 + k = 1 n ( x + k ) x + 3 + + k = 1 n ( x + k ) x + n = k = 1 n ( x + k ) r = 1 n 1 x + r \begin{aligned} f(x) & = (x+1)(x+2)(x+3)\cdots(x+n) \\ f'(x) & = (x+2)(x+3)(x+4)\cdots(x+n) + (x+1)(x+3)(x+4)\cdots(x+n) + (x+1)(x+2)(x+4)\cdots(x+n) + \cdots + (x+1)(x+2)(x+3)\cdots(x+n-1) \\ & = \frac {\prod_{k=1}^n (x+k)}{x+1} + \frac {\prod_{k=1}^n (x+k)}{x+2} + \frac {\prod_{k=1}^n (x+k)}{x+3} + \cdots + \frac {\prod_{k=1}^n (x+k)}{x+n} \\ & = \prod_{k=1}^n (x+k) \sum_{r=1}^n \frac 1{x+r} \end{aligned}

Therefore,

0 1 k = 1 n ( x + k ) r = 1 n 1 x + r d x = 0 1 f ( x ) d x = f ( 1 ) f ( 0 ) = k = 1 n ( k + 1 ) k = 1 n k = ( n + 1 ) ! n ! = n ! ( n + 1 1 ) = n n ! \begin{aligned} \int_0^1 \prod_{k=1}^n (x+k) \sum_{r=1}^n \frac 1{x+r} dx & = \int_0^1 f'(x) \ dx \\ & = f(1) - f(0) \\ & = \prod_{k=1}^n (k+1) - \prod_{k=1}^n k \\ & = (n+1)! - n! \\ & = n!(n+1-1) \\ & = \boxed{n\cdot n!} \end{aligned}

Leonel Castillo
Jan 14, 2018

I will construct a quick argument via integration by parts, but it needs some setup. Let P n ( x ) = k = 1 n ( x + k ) P_n (x)= \prod_{k=1}^n (x+k) and S n ( x ) = r = 1 n 1 x + r S_n (x) = \sum_{r=1}^n \frac{1}{x+r} . Notice that the anti-derivative of S n ( x ) S_n (x) is r = 1 n log ( x + r ) = log r = 1 n ( x + r ) = log P n ( x ) \sum_{r=1}^n \log(x+r) = \log \prod_{r=1}^n (x+r) = \log P_n (x) . Another important observation is that P n ( 0 ) = n ! P_n(0) = n! and P n ( 1 ) = ( n + 1 ) ! P_n(1) = (n+1)! . With that, we want to compute:

0 1 P n ( x ) S n ( x ) d x \int_0^1 P_n(x) S_n(x) dx . Let u = P n ( x ) , d u = ( P n ( x ) ) d x u = P_n(x), du = (P_n(x))' dx and d v = S n ( x ) d x , v = log P n ( x ) dv = S_n(x)dx, v = \log P_n (x) so by integration by parts this is equal to: P n ( x ) log P n ( x ) 0 1 0 1 log ( P n ( x ) ) ( P n ( x ) ) d x = ( n + 1 ) ! log ( ( n + 1 ) ! ) n ! log ( n ! ) 0 1 log ( P n ( x ) ) ( P n ( x ) ) d x P_n(x) \log P_n(x) \bigg|_0^1 - \int_0^1 \log(P_n(x)) (P_n(x))' dx = (n+1)! \log((n+1)!) - n! \log(n!) - \int_0^1 \log(P_n(x)) (P_n(x))' dx .

I will now just focus on the integral. Let u = P n ( x ) u = P_n(x) . Then the integral is equal to n ! ( n + 1 ) ! log u d u = u log u u n ! ( n + 1 ) ! = ( n + 1 ) ! log ( ( n + 1 ) ! ) ( n + 1 ) ! n ! log ( n ! ) + n ! \int_{n!}^{(n+1)!} \log u du = u \log u - u \bigg|_{n!}^{(n+1)!} = (n+1)! \log((n+1)!) - (n+1)! - n! \log(n!) + n! .

Adding that to the whole result we get ( n + 1 ) ! n ! = n ! ( ( n + 1 ) 1 ) = n ! n (n+1)! - n! = n! ((n+1) - 1) = n! n .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...