Integration #6

Calculus Level 4

0 π / 2 x 2 cos x ( 1 + sin x ) 2 d x \int^{\pi /2}_{0} \dfrac{x^2\cos x}{(1+\sin x)^2}dx


The answer is 0.1526.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Jan 17, 2018

If we substitute y = sin x y = \sin x and then integrate by parts twice, we obtain 0 1 2 π x 2 cos x ( 1 + sin x ) 2 d x = 0 1 ( sin 1 y ) 2 ( 1 + y ) 2 d y = [ ( sin 1 y ) 2 1 + y ] 0 1 + 2 0 1 sin 1 y 1 y 2 ( 1 + y ) d y = 1 8 π 2 + 2 0 1 sin 1 y ( 1 y ) 1 2 ( 1 + y ) 3 2 d y = 1 8 π 2 + 2 [ sin 1 y 1 y 1 + y ] 0 1 + 2 0 1 1 1 y 2 1 y 1 + y d y = 2 0 1 d y 1 + y 1 8 π 2 = 2 ln 2 1 8 π 2 \begin{aligned} \int_0^{\frac12\pi} \frac{x^2 \cos x}{(1 + \sin x)^2}\,dx & = \; \int_0^1 \frac{(\sin^{-1}y)^2}{(1+y)^2}\,dy \; = \; \left[-\frac{(\sin^{-1}y)^2}{1+y}\right]_0^1 + 2\int_0^1 \frac{\sin^{-1}y}{\sqrt{1-y^2}(1+y)}\,dy \\ & = \; -\tfrac18\pi^2 + 2\int_0^1 \frac{\sin^{-1}y}{(1-y)^{\frac12}(1+y)^{\frac32}}\,dy \; = \; -\tfrac18\pi^2 + 2\left[-\sin^{-1}y\,\sqrt{\frac{1-y}{1+y}}\right]_0^1 + 2\int_0^1 \frac{1}{\sqrt{1-y^2}}\,\sqrt{\frac{1-y}{1+y}}\,dy \\ & = \; 2\int_0^1 \frac{dy}{1+y} - \tfrac18\pi^2 \; = \; 2\ln2 - \tfrac18\pi^2 \end{aligned} making the answer 0.152593811 \boxed{0.152593811} .

Leonel Castillo
Jan 17, 2018

For integration by parts, let u = x 2 , d u = 2 x d x , d v = cos x d x ( 1 + sin x ) 2 u = x^2, du= 2x dx, dv = \frac{ \cos x dx}{(1 + \sin x)^2} . Then v = cos x d x ( 1 + sin x ) 2 v = \int \frac{ \cos x dx}{(1 + \sin x)^2} . To quickly compute this antiderivative let w = 1 + sin x w = 1 + \sin x so d w = cos x d x dw = \cos x dx so the integral becomes d w w 2 = w 1 = 1 1 + sin x \int \frac{dw}{w^2} = -w^{-1} = -\frac{1}{1 + \sin x} . Then, the whole integral is equal to:

x 2 1 + sin x 0 π 2 + 0 π 2 2 x d x 1 + sin x = π 2 8 + 0 π 2 2 x d x 1 + sin x -\frac{x^2}{1 + \sin x} \bigg|_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} \frac{2xdx}{1 + \sin x} = -\frac{\pi^2}{8} + \int_0^{\frac{\pi}{2}} \frac{2xdx}{1 + \sin x} . The remaining integral is very tricky but it can be turned into a known integral by playing with it a little:

1 + sin x = 1 + cos ( π 2 x ) = 1 + cos ( 2 ( π 4 x 2 ) ) = 2 cos 2 ( π 4 x 2 ) 1 + \sin x = 1 + \cos (\frac{\pi}{2} - x) = 1 + \cos( 2( \frac{\pi}{4} - \frac{x}{2} )) = 2 \cos^2 ( \frac{\pi}{4} - \frac{x}{2}) so the integral is 0 π 2 x sec 2 ( π 4 x 2 ) d x \int_0^{\frac{\pi}{2}} x \sec^2 ( \frac{\pi}{4} - \frac{x}{2} ) dx . Finally, with the substitution u = π 4 x 2 u = \frac{\pi}{4} - \frac{x}{2} the integral becomes 0 π 4 ( π 4 u ) sec 2 u d u \int_0^{\frac{\pi}{4}} (\pi - 4u) \sec^2 u du . This reduces the problem to computing sec 2 x d x \int \sec^2 x dx and x sec 2 x d x \int x \sec^2 x dx which are standard integrals. In the end, it evaluates to log ( 4 ) \log(4) so the solution is log ( 4 ) π 2 8 \log(4) - \frac{\pi^2}{8} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...