Integration!

Calculus Level 2

cos ( 2 x ) cos ( x ) + sin ( x ) d x = ? \int { \frac { \cos { (2x) } }{ \cos { (x)+\sin { (x) } } } \, dx = \, ? }

sin ( 2 x ) cos ( 2 x ) + C \sin(2x)-\cos(2x)+C cos ( 2 x ) sin ( 2 x ) + C \cos(2x)-\sin(2x)+C sin ( x ) cos ( x ) + C \sin(x)-\cos(x)+C sin ( x ) + cos ( x ) + C \sin(x)+\cos(x)+C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mahmoud Mustafa
Jan 5, 2016

cos ( 2 x ) cos ( x ) + sin ( x ) d x = cos 2 ( x ) sin 2 ( x ) cos ( x ) + sin ( x ) d x = ( cos ( x ) + sin ( x ) ) ( cos ( x ) sin ( x ) ) cos ( x ) + sin ( x ) d x = cos ( x ) sin ( x ) d x = sin ( x ) + cos ( x ) + C \int { \frac { \cos { (2x) } }{ \cos { (x)+\sin { (x) } } } \, dx } \\ =\int { \frac { \cos^2(x)- \sin^2 (x) }{ \cos { (x) } +\sin { (x) } } \, dx } \\ =\int { \frac { (\cos(x)+\sin(x))(\cos(x)-\sin(x)) }{ \cos(x)+\sin(x) } \, dx } \\ =\int { \cos(x)-\sin(x) \, dx } \\ =~\large\boxed{\sin(x)+\cos(x)+C}

Good solution! I have made your solution easier to read by making a new line for each step. Also note that when writing trigonometric functions in LaTeX you can use \cos^2 and \sin^2 instead of {\cos(x)}^{2} .

Michael Fuller - 5 years, 5 months ago

lol I just turned the sin ( x ) + cos ( x ) \sin(x)+\cos(x) in 1 and it get a lot harder

Pedro Henrique - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...