Integration (9)

Calculus Level 4

Let f ( x ) f\left( x \right) is a continuous function which takes only positive values for

x 0 x\ge 0 and satisfy f ( 1 ) = 0.5 f\left( 1 \right) =0.5

and 0 x f ( t ) d t = x f ( x ) \int _{ 0 }^{ x }{ f\left( t \right) dt} =x\sqrt { f\left( x \right) } .

Then the value of 1 f ( 2 + 1 ) \frac { 1 }{ f\left( \sqrt { 2 } +1 \right) }


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tanishq Varshney
Jan 24, 2016

Using Newton leibnitz theorem

f ( x ) = f ( x ) + x f ( x ) 2 f ( x ) \large{f(x)=\sqrt{f(x)}+x \frac{f^{\prime} (x)}{2 \sqrt{f(x)}}}

let f ( x ) = y f(x)=y

x d y d x = 2 y ( y y ) \large{\Rightarrow x \frac{d y}{dx}=2 \sqrt{y} (y- \sqrt{y})}

Using variable separable

d y 2 y ( y y ) = d x x \large{\int \frac{dy}{2 \sqrt{y}(y-\sqrt{y})}=\int \frac{dx}{x}}

put y = t \sqrt{y}=t

ln ( y 1 y ) = ln c x \large{\ln \left(\frac{\sqrt{y}-1}{\sqrt{y}}\right)=\ln cx}

where c c is constant of integration.

and f ( 1 ) = 0.5 f(1)=0.5 gives value of c = 1 2 c=1-\sqrt{2}

1 f ( x ) = ( 1 + ( 2 1 ) x ) 2 \Large{\frac{1}{f(x)}=(1+(\sqrt{2}-1)x)^2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...