Integration (2)

Calculus Level 4

0 d x ( x + 1 + x 2 ) 8 \large \int_0^\infty \dfrac{dx}{(x + \sqrt{1+x^2})^8}

If the value of the integral above is equal to p q \dfrac pq , where p p and q q are coprime positive integers, find q p q -p .


The answer is 55.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I = 0 d x ( x + 1 + x 2 ) 8 Let x = tan θ d x = sec 2 θ d θ = 0 π 2 sec 2 θ ( tan θ + sec θ ) 8 d θ = 0 π 2 cos 6 θ d θ ( sin θ + 1 ) 8 d θ By a b f ( x ) d x = a b f ( a + b x ) d x = 0 π 2 sin 6 θ ( cos θ + 1 ) 8 d θ = 0 π 2 2 6 sin 6 θ 2 cos 6 θ 2 ( 2 cos 2 θ 2 1 + 1 ) 8 d θ = 1 4 0 π 2 sin 6 θ 2 cos 10 θ 2 d θ = 1 4 0 π 2 tan 6 θ 2 sec 4 θ 2 d θ Let t = tan θ 2 d t = 1 2 sec 2 θ 2 d θ = 1 4 0 1 t 6 ( 1 + t 2 ) 2 2 d t 1 + t 2 = 1 2 0 1 t 6 ( 1 + t 2 ) d t = 1 2 [ t 7 7 + t 9 9 ] 0 1 = 8 63 \begin{aligned} I & = \int_0^\infty \frac {dx}{(x+\sqrt{1+x^2})^8} & \small \color{#3D99F6} \text{Let }x = \tan \theta \implies dx = \sec^2 \theta \ d\theta \\ & = \int_0^\frac \pi 2 \frac {\sec^2\theta}{(\tan \theta+\sec \theta)^8}\ d \theta \\ & = \int_0^\frac \pi 2 \frac {\cos^6 \theta \ d\theta}{(\sin \theta+1)^8}\ d \theta & \small \color{#3D99F6} \text{By }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \int_0^\frac \pi 2 \frac {\sin^6 \theta}{(\cos \theta+1)^8}\ d \theta \\ & = \int_0^\frac \pi 2 \frac {2^6\sin^6 \frac \theta 2 \cos^6 \frac \theta 2}{\left(2\cos^2 \frac \theta 2-1+1\right)^8}\ d \theta \\ & = \frac 14 \int_0^\frac \pi 2 \frac {\sin^6 \frac \theta 2}{\cos^{10} \frac \theta 2}\ d \theta \\ & = \frac 14 \int_0^\frac \pi 2 \tan^6 \frac \theta 2 \sec^4 \frac \theta 2\ d \theta & \small \color{#3D99F6} \text{Let }t = \tan \frac \theta 2 \implies dt = \frac 12 \sec^2 \frac \theta 2 \ d\theta \\ & = \frac 14 \int_0^1 t^6 (1+t^2)^2 \cdot \frac {2\ dt}{1+t^2} \\ & = \frac 12 \int_0^1 t^6 (1+t^2) \ dt \\ & = \frac 12 \left[\frac {t^7}7 + \frac {t^9}9\right]_0^1 \\ & = \frac 8{63} \end{aligned}

Therefore, q p = 63 8 = 55 q-p = 63-8 = \boxed{55} .

Refer the Result and put n = 8 n=8

Refer Image Refer Image

N o w I ( n ) = n n 2 1 I ( 8 ) = 8 8 2 1 = 8 63 = p q N o w q p = 63 8 = 55 Now\quad I(n)=\frac { n }{ { n }^{ 2 }-1 } \\ I(8)=\frac { 8 }{ { 8 }^{ 2 }-1 } =\frac { 8 }{ 63 } =\frac { p }{ q } \\ Now\quad q-p=63-8=55

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...