Integration and continuity by Dimitris

Calculus Level 3

Let the function f f be twice differentiable on R \mathbb R and also continuous on R \mathbb R , and that 0 π ( f ( x ) + f ( x ) ) sin x d x = π \displaystyle \int_0^\pi (f(x) + f''(x)) \sin x \, dx =\pi and lim x 0 f ( x ) sin x = 1 \displaystyle \lim_{x\to0}\dfrac{f(x)}{\sin x} = 1 . Find f ( π ) f(\pi) .

Notation : R \mathbb R denotes the set of real numbers .

π \pi π -\pi 1 1 0 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

  • if g fraction ,which is defined R R -{0,π} . g(x)= f ( x ) s i n x \frac{f(x)}{sinx} , =>f(x)=g(X) sinx , because lim x 0 f ( x ) sin x = 1 \displaystyle \lim_{x\to0}\dfrac{f(x)}{\sin x} = 1 => lim x 0 g ( x ) = 1 \displaystyle \lim_{x\to0}\ g(x) = 1

  • lim x 0 f ( x ) = \displaystyle \lim_{x\to0}\ f(x) = lim x 0 g ( x ) s i n x = g ( 0 ) s i n 0 \displaystyle \lim_{x\to0}\ g(x) sinx = g(0) sin0 =0,because f fraction is continuous lim x 0 f ( x ) = f ( 0 ) \displaystyle \lim_{x\to0}\ f(x) = f(0)

f(0)=0
  • f fraction is differentiable lim x 0 f ( x ) f ( 0 ) x 0 = f ΄ ( 0 ) \displaystyle \lim_{x\to0}\dfrac{f(x)-f(0)}{\ x-0} = f΄(0) = lim x 0 g ( x ) s i n x x = \displaystyle \lim_{x\to0}\dfrac{g(x) sinx}{\ x} = lim x 0 ( g ( x ) s i n x ) ΄ ( x ) ΄ = \displaystyle \lim_{x\to0}\dfrac{(g(x) sinx)΄}{( x)΄} = lim x 0 g ΄ ( x ) s i n x + g ( x ) c o s x = \displaystyle \lim_{x\to0}\ g΄(x) sinx +g(x) cosx = g΄(0) sin0 +g(0) cos0=1
f΄(0)=1

(because it arises limit 0 0 \frac{0}{0} then we can apply differentiation rule of de l'hopital)

0 π ( f ( x ) + f ( x ) ) sin x d x = π \displaystyle \int_0^\pi (f(x) + f'(x)) \sin x \, dx =\pi -=> 0 π f ( x ) s i n x + f ( x ) sin x d x = π \displaystyle \int_0^\pi f(x) sinx + f'(x) \sin x \, dx =\pi => 0 π ( f ( x ) s i n x ) , d x + 0 π ( f ( x ) sin x ) d x = π \displaystyle \int_0^\pi (f(x) sinx) , dx + \displaystyle \int_0^\pi ( f'(x) \sin x )\, dx =\pi => 0 π ( f ( x ) ( c o s x ) ) d x + 0 π ( f ( x ) ) s i n x d x = π \displaystyle \int_0^\pi (f(x) (-cosx ) )\, dx + \displaystyle \int_0^\pi ( f'(x))' sin x \, dx =\pi =>

\ \left|f(x) (-cosx)\right|_{\color{}{0}}^{\color{}{\pi}} + \displaystyle \int_0^\pi ( f'(x)) (cos x) \, dx +[\ \left|f'(x) (sinx)\right|_{\color{}{0}}^{\color{}{\pi}}- \displaystyle \int_0^\pi ( f'(x)) cos x \, dx =\pi => ( c o s π ) f ( π ) ( c o s 0 ) f ( 0 ) + f ( π ) s i n π f ( 0 ) s i n 0 = π = > f ( π ) = π (-cos π) f(π)-(-cos 0) f(0)+f'(π) sin π - f(0) sin 0=π=>f(π)=π


f(π)=π

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...