Integration and radicals (3)

Calculus Level 4

0 1 x 2 x x x x 5 4 3 d x = 1 k e \Large \int_{0}^{1} \large \frac{x^2}{\sqrt{x\sqrt[3]{x\sqrt[4]{x\sqrt[5]{x\cdots}}}}} \ dx \ = \ \frac{1}{k-e}

If k k is a positive integer satisfies the equation above, find k k .

Notation : e 2.71828 e \approx 2.71828 denotes the Euler's number .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

I = 0 1 x 2 x x x x 5 4 3 d x See note. = 0 1 x 2 x e 2 d x = 0 1 x 4 e d x = [ x 5 e 5 e ] 0 1 = 1 5 e \begin{aligned} I & = \int_0^1 \frac {x^2}{\color{#3D99F6}\sqrt {x\sqrt[3]{x\sqrt[4]{x\sqrt[5]{x \cdots}}}}} dx & \small \color{#3D99F6} \text{See note.} \\ & = \int_0^1 \frac {x^2}{\color{#3D99F6} x^{e-2}} dx \\ & = \int_0^1 x^{4-e} dx \\ & = \left[\frac {x^{5-e}}{5-e} \right]_0^1 \\ & = \frac 1{5-e} \end{aligned}

k = 5 \implies k = \boxed{5}


Note: Reference eqns 33-35

Note that:

e = 1 + 1 1 ! + 1 2 ! + 1 3 ! + 1 4 ! + 1 5 ! + = 1 + 1 + 1 2 ( 1 + 1 3 ( 1 + 1 4 ( 1 + 1 5 ( 1 + ) ) ) ) x e 2 = x x x x 5 4 3 \begin{aligned} e & = 1 + \frac 1{1!} + \frac 1{2!} + \frac 1{3!} + \frac 1{4!} + \frac 1{5!} + \cdots \\ & = 1 + 1 + \frac 12 \left(1 + \frac 13 \left(1 + \frac 14 \left(1 + \frac 15 \left(1 + \cdots \right) \right) \right) \right) \\ \implies x^{e-2} & = \sqrt {x\sqrt[3]{x\sqrt[4]{x\sqrt[5]{x \cdots}}}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...