Integration Arctan x

Calculus Level 2

arctan x d x \large \int \arctan x\, dx

Evaluate the indefinite integral above.

Notation : C C denotes the arbitrary constant of integration.

arctan x 1 2 ln ( x 2 + 1 ) \arctan x-\frac{1}{2}\ln(x^2+1) x arctan x 1 2 ln ( x 2 + 1 ) + C x \arctan x-\frac{1}{2}\ln(x^2+1) + C x arctan x + 1 2 ln ( x 2 + 1 ) + C x \arctan x+\frac{1}{2}\ln(x^2+1) + C x arctan x 1 3 ln ( x + 1 ) + C x \arctan x-\frac{1}{3}\ln(x+1) + C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 27, 2017

I = arctan x d x Let θ = arctan x , tan θ = x , sec 2 θ d θ = d x = θ sec 2 θ d θ By integration by parts = θ tan θ tan θ d θ = θ tan θ sin θ cos θ d θ Note that d cos θ = sin θ d θ = θ tan θ + 1 cos θ d cos θ = θ tan θ + ln ( cos θ ) + C where C is the constant of integration. = x arctan x + ln ( 1 x 2 + 1 ) + C Note that tan θ = x cos θ = 1 x 2 + 1 = x arctan x 1 2 ln ( x 2 + 1 ) + C \begin{aligned} I & = \int \arctan x \ dx & \small \color{#3D99F6} \text{Let }\theta = \arctan x, \ \tan \theta = x, \ \sec^2 \theta \ d\theta = dx \\ & = \int \theta \sec^2 \theta \ d\theta & \small \color{#3D99F6} \text{By integration by parts} \\ & = \theta \tan \theta - \int \tan \theta \ d\theta \\ & = \theta \tan \theta \ {\color{#3D99F6}-} \int \frac {\color{#3D99F6}\sin \theta}{\cos \theta} \color{#3D99F6}d\theta & \small \color{#3D99F6} \text{Note that } d \cos \theta = - \sin \theta \ d \theta \\ & = \theta \tan \theta \ {\color{#3D99F6}+} \int \frac 1{\cos \theta} \color{#3D99F6}d \cos \theta \\ & = \theta \tan \theta + \ln (\cos \theta) + \color{#3D99F6} C & \small \color{#3D99F6} \text{where }C \text{ is the constant of integration.} \\ & = x \arctan x + \ln \left(\sqrt{\frac 1{x^2+1}}\right) + C & \small \color{#3D99F6} \text{Note that }\tan \theta = x \implies \cos \theta = \sqrt{\frac 1{x^2+1}} \\ & = \boxed{x \arctan x - \dfrac 12 \ln \left(x^2+1\right) + C} \end{aligned}

With the help of the factorial method we are catching up in the final answer

A r c t a n x d x . = ( x ) A r c t a n x d x . = x A r c t a n x x x 2 + 1 d x . = x A r c t a n x 1 2 l n ( x 2 + 1 ) + C \int Arc tan x\, dx . = \int (x)' Arc tan x\, dx . =x Arctan x- \int \frac{x}{x^2+1}dx.=x Arc tan x-\frac{1}{2}ln(x^2+1) + C

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...