The idealized integral

Calculus Level 5

1 2 x 3 1 x 6 + 2 x 3 + 9 x 2 + 1 d x \large \int_1^\infty \frac{2x^3-1}{x^6 + 2x^3 + 9x^2 + 1} \, dx

If the integral above equals to A B cot 1 ( C D ) \frac AB \cot^{-1} \left( \frac CD \right) for positive integers A , B , C , D A,B,C,D such that gcd ( A , B ) = gcd ( C , D ) = 1 \gcd(A,B) = \gcd(C,D) = 1 , evaluate 2 ( A + B + C + D ) 2(A+B+C+D) .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Vishnu C
Jul 1, 2015

Given integral = 1 2 x 3 1 ( x 3 + 1 ) 2 + 9 x 2 d x \large\displaystyle\int _{1} ^{\infty} {\frac {2x^3-1}{(x^3+1)^2+9x^2}} dx

1 2 x 3 1 x 2 ( ( x 2 + 1 x ) 2 + 9 ) d x \large\displaystyle\Rightarrow \int _{1} ^{\infty} {\frac {2x^3-1}{x^2((x^2+\frac 1 x )^2+9)}} dx

1 2 x 1 x 2 ( x 2 + 1 x ) 2 + 9 d x \large\displaystyle\Rightarrow \int _{1} ^{\infty} {\frac {2x-\frac 1 {x^2}}{(x^2+\frac 1 x )^2+9}} dx

Substituting x 2 + 1 x = t d x = d t ( 2 x 1 x 2 ) x^2+\frac 1 x = t \Rightarrow dx = \frac {dt} {(2x-\frac 1 {x^2})} we get,

1 3 tan 1 ( x 2 + 1 x 3 ) 1 1 3 ( π 2 tan 1 ( 2 3 ) ) 1 3 cot 1 ( 2 3 ) ( tan 1 ( x ) + cot 1 ( x ) = π 2 ) A = 1 ; B = 3 ; C = 2 ; D = 3. 2 ( A + B + C + D ) = 18 \frac {1} { 3} \tan ^{-1} (\frac {x^2 + \frac 1 x } 3 )|^{\infty} _{1}\\ \Rightarrow \frac 1 3 ( \frac {\pi} 2 -\tan ^{-1} (\frac 2 3))\\ \Rightarrow \frac 1 3 \cot ^{-1} (\frac 23 ) \quad (\because \tan^{-1}(x)+\cot ^{-1} (x) = \frac {\pi} 2)\\ \Rightarrow A =1; B=3; C =2; D =3.\\ \Rightarrow 2(A+B+C+D) = \boxed {18}

Moderator note:

Careful there, you need to write those d x dx 's. Nice work though!

A very interesting definite integral. Congratulation!

Lu Chee Ket - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...