Integration challenge 2

Calculus Level 5

0 π 4 x 2 ( sin ( 2 x ) cos ( 2 x ) ) cos 2 ( x ) ( 1 + sin ( 2 x ) ) d x \large \int_0^{\frac \pi4} \frac{x^2(\sin(2x) - \cos(2x))}{\cos^2(x) (1 + \sin(2x)) } \, dx

If the value of the integral above equals to π A B π C D ln ( E ) \dfrac{\pi^A}B - \dfrac{\pi^C}{D} \ln(E) for integers A , B , C , D A,B,C,D and E E , find the minimum value of A + B + C + D + E A+B+C+D+E .

Try my set .


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hasan Kassim
Aug 5, 2015

Note that :

1 1 + cos 2 x 1 1 + sin 2 x = sin 2 x cos 2 x ( 1 + cos 2 x ) ( 1 + sin 2 x ) \displaystyle \frac{1}{1+\cos 2x } - \frac{1}{1+\sin 2x } = \frac{\sin 2x - \cos 2x }{(1+\cos 2x)(1+\sin 2x) }

= sin 2 x cos 2 x ( 2 cos 2 x ) ( 1 + sin 2 x ) \displaystyle = \frac{\sin 2x - \cos 2x }{(2\cos^2x)(1+\sin 2x) }

Hence:

0 π 4 x 2 sin 2 x cos 2 x ( cos 2 x ) ( 1 + sin 2 x ) d x \displaystyle \int_0^{\frac{\pi}{4}} x^2 \frac{\sin 2x - \cos 2x }{(\cos^2x)(1+\sin 2x) }dx

= 0 π 4 2 x 2 ( 1 1 + cos 2 x 1 1 + sin 2 x ) d x \displaystyle = \int_0^{\frac{\pi}{4}} 2x^2 ( \frac{1}{1+\cos 2x } - \frac{1}{1+\sin 2x } ) dx

= 0 π 4 2 x 2 1 + cos 2 x d x 0 π 4 2 x 2 1 + sin 2 x d x \displaystyle = \int_0^{\frac{\pi}{4}} \frac{2x^2}{1+\cos 2x } dx - \int_0^{\frac{\pi}{4}} \frac{2x^2}{1+\sin 2x } dx

Use the substitution x ( π 4 x ) \; x \to (\frac{\pi}{4} - x) \; in the second integral :

= 0 π 4 2 x 2 1 + cos 2 x d x 0 π 4 2 ( π 4 x ) 2 1 + cos 2 x d x \displaystyle = \int_0^{\frac{\pi}{4}} \frac{2x^2}{1+\cos 2x } dx - \int_0^{\frac{\pi}{4}} \frac{2(\frac{\pi}{4} - x)^2}{1+\cos 2x } dx

= 2 0 π 4 x 2 ( π 4 x ) 2 1 + cos 2 x d x \displaystyle = 2 \int_0^{\frac{\pi}{4}} \frac{x^2-(\frac{\pi}{4} - x)^2 }{1+\cos 2x } dx

= π 2 0 π 4 2 x π 4 1 + cos 2 x d x \displaystyle = \frac{\pi}{2} \int_0^{\frac{\pi}{4}} \frac{2x-\frac{\pi}{4}}{1+\cos 2x } dx

= π 2 0 π 4 ( x π 8 ) sec 2 x d x \displaystyle = \frac{\pi}{2} \int_0^{\frac{\pi}{4}} (x-\frac{\pi}{8}) \sec^2x dx

The rest is easily manipulated by integration by parts... To get the value:

= π 2 16 π 1 4 ln ( 2 ) \displaystyle \boxed{ = \frac{\pi ^2}{16} - \frac{\pi^1}{4} \ln (2) }

So the answer is : 2 + 16 + 1 + 4 + 2 = 25 2+16+1+4+2 = 25 .

Moderator note:

Good observation with the partial fractions.

For completeness, you should state what the final answer is.

Challenge Master: Thanks for the feedback! Edited!!

Hasan Kassim - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...