∫ 0 4 π cos 2 ( x ) ( 1 + sin ( 2 x ) ) x 2 ( sin ( 2 x ) − cos ( 2 x ) ) d x
If the value of the integral above equals to B π A − D π C ln ( E ) for integers A , B , C , D and E , find the minimum value of A + B + C + D + E .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Good observation with the partial fractions.
For completeness, you should state what the final answer is.
Challenge Master: Thanks for the feedback! Edited!!
Problem Loading...
Note Loading...
Set Loading...
Note that :
1 + cos 2 x 1 − 1 + sin 2 x 1 = ( 1 + cos 2 x ) ( 1 + sin 2 x ) sin 2 x − cos 2 x
= ( 2 cos 2 x ) ( 1 + sin 2 x ) sin 2 x − cos 2 x
Hence:
∫ 0 4 π x 2 ( cos 2 x ) ( 1 + sin 2 x ) sin 2 x − cos 2 x d x
= ∫ 0 4 π 2 x 2 ( 1 + cos 2 x 1 − 1 + sin 2 x 1 ) d x
= ∫ 0 4 π 1 + cos 2 x 2 x 2 d x − ∫ 0 4 π 1 + sin 2 x 2 x 2 d x
Use the substitution x → ( 4 π − x ) in the second integral :
= ∫ 0 4 π 1 + cos 2 x 2 x 2 d x − ∫ 0 4 π 1 + cos 2 x 2 ( 4 π − x ) 2 d x
= 2 ∫ 0 4 π 1 + cos 2 x x 2 − ( 4 π − x ) 2 d x
= 2 π ∫ 0 4 π 1 + cos 2 x 2 x − 4 π d x
= 2 π ∫ 0 4 π ( x − 8 π ) sec 2 x d x
The rest is easily manipulated by integration by parts... To get the value:
= 1 6 π 2 − 4 π 1 ln ( 2 )
So the answer is : 2 + 1 6 + 1 + 4 + 2 = 2 5 .