Integration from Purcell

Calculus Level 3

0 2 π x sin x 1 + cos 2 x d x = ? \large \int_{0}^{2\pi} \dfrac{x |\sin x|}{1+\cos^2 x} dx =?

π \pi 2 π 2 \pi π 2 \pi^{2} π 2 \dfrac{\pi}{\sqrt{2}} 0 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 22, 2018

I = 0 2 π x sin x 1 + cos 2 x d x Using a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 2 π ( x sin x 1 + cos 2 x + ( 2 π x ) sin x 1 + cos 2 x ) d x = π 0 2 π sin x 1 + cos 2 x d x Since the integrand is even = 2 π 0 π sin x 1 + cos 2 x d x The integrand is symmetrical about π 2 . = 4 π 0 π 2 sin x 1 + cos 2 x d x Let u = cos x d u = sin x d x . = 4 π 0 1 1 1 + u 2 d u = 4 π tan 1 u 0 1 = π 2 \begin{aligned} I & = \int_0^{2 \pi} \frac {x|\sin x|}{1+\cos^2 x} dx & \small \color{#3D99F6} \text{Using }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 12 \int_0^{2 \pi} \left( \frac {x|\sin x|}{1+\cos^2 x} + \frac {(2\pi - x)|\sin x|}{1+\cos^2 x} \right) dx \\ & = \pi \int_0^{2 \pi} \frac {|\sin x|}{1+\cos^2 x} dx & \small \color{#3D99F6} \text{Since the integrand is even} \\ & = 2\pi \int_0^\pi \frac {\sin x}{1+\cos^2 x} dx & \small \color{#3D99F6} \text{The integrand is symmetrical about }\frac \pi 2. \\ & = 4\pi \int_0^\frac \pi2 \frac {\sin x}{1+\cos^2 x} dx & \small \color{#3D99F6} \text{Let }u = \cos x \implies du = - \sin x \ dx. \\ & = 4\pi \int_0^1 \frac 1{1+u^2} du \\ & = 4\pi \tan^{-1} u \bigg|_0^1 \\ & = \boxed{\pi^2} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...