I = ∫ − ∞ ∞ x 2 e − x 2 cos 2 ( π x ) d x Find ⌊ 1 0 0 0 I ⌋ .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
friend , in substituting
t=x-i*pi
will not the limits also become complex
that is where i was not able to procced and use the gamma function..tnks
Log in to reply
Because of that step only I wrote that I won't be giving justification of my steps, I myself am confused because of that, is it co-incidence or what that I got the correct answer by ignoring this.
I too had the same doubt. I was just thinking of a complex analysis approach(if any) for this problem. Can you help?
I am going to use a general result ∫ − ∞ ∞ e − x 2 d x = π . Let I ( a ) = ∫ − ∞ ∞ e − a x 2 c o s 2 ( x π ) d x So 2 I ( a ) = ∫ − ∞ ∞ e − a x 2 ( 1 + c o s ( 2 x π ) ) d x Let I 1 = ∫ − ∞ ∞ e − a x 2 d x and I 2 = ∫ − ∞ ∞ e − a x 2 c o s ( 2 x π ) d x Let us evaluate I 1 first:- To do that use the substitution a x = t To get I 1 = a π
I 2 can be written as :-
I 2 = ℜ ∫ − ∞ ∞ e − a x 2 e − 2 i x π d x
I 2 = ℜ ( e − a π 2 ∫ − ∞ ∞ e − ( a x 2 + 2 i x π − a π 2 ) d x ) I 2 = ℜ ( e − a π 2 ∫ − ∞ ∞ e − ( a x + a i π ) 2 d x )
Substitute a x + a i π = t . To get
I 2 = e − a π 2 a π
2 I ( a ) = a π ( 1 + e − a π 2 )
Now as we can see if we apply Leibnitz Rule for differnetiation under the integral sign. We see that I ′ ( a ) = − ∫ − ∞ ∞ x 2 e − a x 2 c o s 2 ( x π ) d x So we need − I ′ ( 1 ) Differentiating the expression we got for I ( a ) we have:-
2 I ′ ( a ) = − 2 a 2 3 π ( 1 + e − a π 2 ) + a π e − a π 2 a 2 π 2
Substitute a = 1 to get the answer as 0 . 4 4 2 6
Disambiguation:- ℜ ( . ) denotes the real part of a complex number.
Brilliant! Thanks for the answer!
An alternate solution. First, write cos 2 ( π x ) as a series.
cos 2 ( π x ) = 2 1 [ cos ( 2 π x ) + 1 ] = 2 1 [ ( n = 0 ∑ ∞ ( − 1 ) n ( 2 n ) ! ( 2 π x ) 2 n ) + 1 ]
Next plug that into the integral, and exchange the sum and integral signs (this is valid because x 2 n e − x 2 is nonnegative everywhere; monotone convergence theorem).
∫ − ∞ ∞ x 2 e − x 2 cos 2 ( π x ) d x = ∫ − ∞ ∞ x 2 e − x 2 2 1 [ ( n = 0 ∑ ∞ ( − 1 ) n ( 2 n ) ! ( 2 π x ) 2 n ) + 1 ] d x = 2 1 [ ( n = 0 ∑ ∞ ( − 1 ) n ( 2 n ) ! ( 2 π ) 2 n ) ∫ − ∞ ∞ x 2 ( n + 1 ) e − x 2 d x ] + 2 1 ∫ − ∞ ∞ x 2 e − x 2 d x = 2 1 [ ( n = 0 ∑ ∞ ( − 1 ) n ( 2 n ) ! ( 2 π ) 2 n ) ( n + 2 1 ) ! ] + 4 π = 4 π [ 1 + n = 0 ∑ ∞ 2 2 n ( − 1 ) n ( 2 π ) 2 n n ( n − 2 1 ) ( n − 1 ) ⋯ ( 2 3 ) ( 1 ) ( 2 1 ) ( n + 2 1 ) ( n − 2 1 ) ⋯ ( 2 3 ) ] = 4 π [ 1 + 2 n = 0 ∑ ∞ ( − π 2 ) n n ! ( n + 2 1 ) ] = 4 π [ 1 + 2 ( 1 − π 2 ) n = 0 ∑ ∞ n ! ( − π 2 ) n ] = 4 π [ 1 + 2 ( ( 2 1 − π 2 ) e − π 2 ] = 0 . 4 4 2 7 …
I am not giving full solution here. Just giving sketch of my solution : Take, f ( a ) = ∫ ∞ ∞ x 2 e − x 2 cos 2 ( a x ) 1.) Compute f ′ ( a )
2.) Apply parts
3.) Make differential equation
4.) Solve it
5.) Use f ( 0 ) = 2 π
6.) Find f ( π )
P.S: IF you didn't got anything, then ignore. I will post complete solution when i get time. [ After may -_- ]
Can you a post the complete solution? Thanks.
I like this solution. You can use differentiation under the integral sign on nearly any integral, provided you're clever enough. :)
Applying by parts wouldn't be as easy as you describe your method to be....
Problem Loading...
Note Loading...
Set Loading...
I won't be giving justification of my steps,
Firstly I am proving some results here :
∫ − ∞ ∞ e − x 2 d x = π
∫ − ∞ ∞ x 2 e − x 2 d x = 2 π
Proof :
With a little change of variables first integral got converted into :
∫ − ∞ ∞ x 2 e − x 2 d x = 2 ∫ 0 ∞ x 2 e − x 2 d x = ∫ 0 ∞ t e − t d t = Γ ( 3 / 2 ) = 2 1 Γ ( 1 / 2 ) = 2 π
Similarly second can be proved.
Now back to our integral we have
I = 2 1 ∫ − ∞ ∞ x 2 e − x 2 ( 1 + c o s ( 2 π x ) ) d x
We will be computing J = ∫ − ∞ ∞ x 2 e − x 2 c o s ( 2 π x ) d x = R e ( ∫ − ∞ ∞ x 2 e − x 2 + 2 π i x d x )
⇒ J = R e ( e − π 2 ∫ − ∞ ∞ x 2 e − ( x − π i ) 2 d x )
t = x − π i we have ;
J = R e ( e − π 2 ∫ − ∞ ∞ ( t + π i ) 2 e − t 2 d t )
J = R e ( e − π 2 ∫ − ∞ ∞ t 2 e − t 2 + 2 π i t e − t 2 − π 2 e − t 2 d t )
Now observe that ∫ − ∞ ∞ 2 π i x e − x 2 d x = 0
Hence our integral becomes :
J = e − π 2 ∫ − ∞ ∞ x 2 e − x 2 − π 2 e − x 2 d x
Using our results proved above we have :
J = 2 π e − π 2 ( 1 − 2 π 2 )
Putting the value of J in I we have finally the value of I as :
I = 4 π e − π 2 ( 1 − 2 π 2 ) + 4 π