Integration FTW!

Calculus Level 5

I = x 2 e x 2 cos 2 ( π x ) d x I=\int_{-\infty}^{\infty} x^2e^{-x^2}\cos^2(\pi x) \mathrm{d}x Find 1000 I \lfloor 1000I\rfloor .


The answer is 442.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Ronak Agarwal
Mar 6, 2015

I won't be giving justification of my steps,

Firstly I am proving some results here :

e x 2 d x = π \displaystyle \int _{ -\infty }^{ \infty }{ { e }^{ -{ x }^{ 2 } }dx } = \sqrt { \pi }

x 2 e x 2 d x = π 2 \displaystyle \int _{ -\infty }^{ \infty }{ { x }^{ 2 }{ e }^{ -{ x }^{ 2 } }dx } =\frac { \sqrt { \pi } }{ 2 }

Proof :

With a little change of variables first integral got converted into :

x 2 e x 2 d x = 2 0 x 2 e x 2 d x = 0 t e t d t = Γ ( 3 / 2 ) = 1 2 Γ ( 1 / 2 ) = π 2 \displaystyle \int _{ -\infty }^{ \infty }{ { x }^{ 2 }{ e }^{ -{ x }^{ 2 } }dx } =2\int _{ 0 }^{ \infty }{ { x }^{ 2 }{ e }^{ -{ x }^{ 2 } }dx } =\int _{ 0 }^{ \infty }{ \sqrt { t } { e }^{ -t }dt } =\Gamma (3/2)=\frac { 1 }{ 2 } \Gamma (1/2)=\frac { \sqrt { \pi } }{ 2 }

Similarly second can be proved.

Now back to our integral we have

I = 1 2 x 2 e x 2 ( 1 + c o s ( 2 π x ) ) d x \displaystyle I = \frac { 1 }{ 2 } \int _{ -\infty }^{ \infty }{ { x }^{ 2 }{ e }^{ { -x }^{ 2 } }(1+cos(2\pi x))dx }

We will be computing J = x 2 e x 2 c o s ( 2 π x ) d x = R e ( x 2 e x 2 + 2 π i x d x ) \displaystyle J = \int _{ -\infty }^{ \infty }{ { x }^{ 2 }{ e }^{ -{ x }^{ 2 } }cos(2\pi x)dx } =Re(\int _{ -\infty }^{ \infty }{ { x }^{ 2 }{ e }^{ -{ x }^{ 2 }+2\pi ix }dx } )

J = R e ( e π 2 x 2 e ( x π i ) 2 d x ) \Rightarrow J = Re({ e }^{ -{ \pi }^{ 2 } }\int _{ -\infty }^{ \infty }{ { x }^{ 2 }{ e }^{ -{ (x-\pi i) }^{ 2 } }dx } )

t = x π i t= x-\pi i we have ;

J = R e ( e π 2 ( t + π i ) 2 e t 2 d t ) \displaystyle J = Re({ e }^{ -{ \pi }^{ 2 } }\int _{ -\infty }^{ \infty }{ { (t+\pi i) }^{ 2 }{ e }^{ -{ t }^{ 2 } }dt } )

J = R e ( e π 2 t 2 e t 2 + 2 π i t e t 2 π 2 e t 2 d t ) \displaystyle J = Re({ e }^{ -{ \pi }^{ 2 } }\int _{ -\infty }^{ \infty }{ { t }^{ 2 }{ e }^{ -{ t }^{ 2 } }+2\pi it{ e }^{ -{ t }^{ 2 } }-{ \pi }^{ 2 }{ e }^{ -{ t }^{ 2 } }dt } )

Now observe that 2 π i x e x 2 d x = 0 \displaystyle \int _{ -\infty }^{ \infty }{ 2\pi ix{ e }^{ -{ x }^{ 2 } }dx } =0

Hence our integral becomes :

J = e π 2 x 2 e x 2 π 2 e x 2 d x \displaystyle J = { e }^{ -{ \pi }^{ 2 } }\int _{ -\infty }^{ \infty }{ { x }^{ 2 }{ e }^{ -{ x }^{ 2 } }-{ \pi }^{ 2 }{ e }^{ -{ x }^{ 2 } }dx }

Using our results proved above we have :

J = π e π 2 2 ( 1 2 π 2 ) J = \dfrac { \sqrt { \pi } { e }^{ { -\pi }^{ 2 } } }{ 2 } (1-2{ \pi }^{ 2 })

Putting the value of J J in I I we have finally the value of I I as :

I = π e π 2 4 ( 1 2 π 2 ) + π 4 I = \dfrac { \sqrt { \pi } { e }^{ { -\pi }^{ 2 } } }{ 4 } (1-2{ \pi }^{ 2 })+\dfrac { \sqrt { \pi } }{ 4 }

friend , in substituting

t=x-i*pi

will not the limits also become complex

that is where i was not able to procced and use the gamma function..tnks

incredible mind - 6 years, 3 months ago

Log in to reply

Because of that step only I wrote that I won't be giving justification of my steps, I myself am confused because of that, is it co-incidence or what that I got the correct answer by ignoring this.

Ronak Agarwal - 6 years, 3 months ago

I too had the same doubt. I was just thinking of a complex analysis approach(if any) for this problem. Can you help?

Kartik Sharma - 5 years, 11 months ago

I am going to use a general result e x 2 d x = π \int_{-\infty}^{\infty} e^{-x^{2}} dx = \sqrt{\pi} . Let I ( a ) = e a x 2 c o s 2 ( x π ) d x \Large I(a) =\int_{-\infty}^{\infty} e^{-ax^{2}}cos^{2}(x\pi) dx So 2 I ( a ) = e a x 2 ( 1 + c o s ( 2 x π ) ) d x \Large 2I(a) =\int_{-\infty}^{\infty} e^{-ax^{2}}(1+cos(2x\pi)) dx Let I 1 = e a x 2 d x I_{1} = \int_{-\infty}^{\infty}e^{-ax^{2}} dx and I 2 = e a x 2 c o s ( 2 x π ) d x I_{2} = \int_{-\infty}^{\infty}e^{-ax^{2}}cos(2x\pi) dx Let us evaluate I 1 I_{1} first:- To do that use the substitution a x = t \sqrt{a}x = t To get I 1 = π a I_{1} = \sqrt{\frac{\pi}{a}}

I 2 I_{2} can be written as :-

I 2 = e a x 2 e 2 i x π d x \Large I_{2} = \Re \int_{-\infty}^{\infty}e^{-ax^{2}}e^{-2ix\pi} dx

I 2 = ( e π 2 a e ( a x 2 + 2 i x π π 2 a ) d x ) \Large I_{2} = \Re( e^{-\frac{\pi^{2}}{a}}\int_{-\infty}^{\infty}e^{-(ax^{2}+2ix\pi - \frac{\pi^{2}}{a})} dx) I 2 = ( e π 2 a e ( a x + i π a ) 2 d x ) \Large I_{2} = \Re( e^{-\frac{\pi^{2}}{a}}\int_{-\infty}^{\infty}e^{-(\sqrt{a}x + \frac{i\pi}{\sqrt{a}})^{2}} dx)

Substitute a x + i π a = t \sqrt{a}x + \frac{i\pi}{\sqrt{a}} = t . To get

I 2 = e π 2 a π a \Large I_{2} = e^{-\frac{\pi^{2}}{a}} \sqrt{\frac{\pi}{a}}

2 I ( a ) = π a ( 1 + e π 2 a ) \Large 2I(a) = \sqrt{\frac{\pi}{a}}(1+e^{-\frac{\pi^{2}}{a}})

Now as we can see if we apply Leibnitz Rule for differnetiation under the integral sign. We see that I ( a ) = x 2 e a x 2 c o s 2 ( x π ) d x \Large I'(a) =-\int_{-\infty}^{\infty}x^{2}e^{-ax^{2}}cos^{2}(x\pi) dx So we need I ( 1 ) -I'(1) Differentiating the expression we got for I ( a ) I(a) we have:-

2 I ( a ) = π 2 a 3 2 ( 1 + e π 2 a ) + π a e π 2 a π 2 a 2 \Large 2I'(a) = -\frac{\sqrt{\pi}}{2a^{\frac{3}{2}}}(1+e^{-\frac{\pi^{2}}{a}}) + \sqrt\frac{\pi}{a}e^{-\frac{\pi^2}{a}}\frac{\pi^{2}}{a^{2}}

Substitute a = 1 a=1 to get the answer as 0.4426 0.4426

Disambiguation:- ( . ) \Re(.) denotes the real part of a complex number.

Brilliant! Thanks for the answer!

Pratik Shastri - 1 year, 3 months ago

Log in to reply

merci beaucoup

Arghyadeep Chatterjee - 1 year, 3 months ago
Milly Choochoo
Sep 1, 2017

An alternate solution. First, write cos 2 ( π x ) \cos^2(\pi x) as a series.

cos 2 ( π x ) = 1 2 [ cos ( 2 π x ) + 1 ] = 1 2 [ ( n = 0 ( 1 ) n ( 2 π x ) 2 n ( 2 n ) ! ) + 1 ] \begin{aligned} \cos^2(\pi x) &= \frac{1}{2}\left[\cos(2\pi x) + 1\right]\\ &= \frac{1}{2}\left[\left(\sum_{n=0}^{\infty} (-1)^n\frac{(2\pi x)^{2n}}{(2n)!}\right)+ 1\right]\\ \end{aligned}

Next plug that into the integral, and exchange the sum and integral signs (this is valid because x 2 n e x 2 x^{2n}e^{-x^2} is nonnegative everywhere; monotone convergence theorem).

x 2 e x 2 cos 2 ( π x ) d x = x 2 e x 2 1 2 [ ( n = 0 ( 1 ) n ( 2 π x ) 2 n ( 2 n ) ! ) + 1 ] d x = 1 2 [ ( n = 0 ( 1 ) n ( 2 π ) 2 n ( 2 n ) ! ) x 2 ( n + 1 ) e x 2 d x ] + 1 2 x 2 e x 2 d x = 1 2 [ ( n = 0 ( 1 ) n ( 2 π ) 2 n ( 2 n ) ! ) ( n + 1 2 ) ! ] + π 4 = π 4 [ 1 + n = 0 ( 1 ) n ( 2 π ) 2 n 2 2 n ( n + 1 2 ) ( n 1 2 ) ( 3 2 ) n ( n 1 2 ) ( n 1 ) ( 3 2 ) ( 1 ) ( 1 2 ) ] = π 4 [ 1 + 2 n = 0 ( π 2 ) n ( n + 1 2 ) n ! ] = π 4 [ 1 + 2 ( 1 π 2 ) n = 0 ( π 2 ) n n ! ] = π 4 [ 1 + 2 ( ( 1 2 π 2 ) e π 2 ] = 0.4427 \begin{aligned} \int_{-\infty}^{\infty}x^2e^{-x^2}\cos^2(\pi x)\,dx&=\int_{-\infty}^{\infty}x^2e^{-x^2}\frac{1}{2}\left[\left(\sum_{n=0}^{\infty} (-1)^n\frac{(2\pi x)^{2n}}{(2n)!}\right)+ 1\right]\,dx\\ &=\frac{1}{2}\left[\left(\sum_{n=0}^{\infty} (-1)^n\frac{(2\pi)^{2n}}{(2n)!}\right)\int_{-\infty}^{\infty} x^{2(n+1)}e^{-x^2} dx \right]+\frac{1}{2}\int_{-\infty}^{\infty}x^2e^{-x^2} dx\\ &=\frac{1}{2}\left[\left(\sum_{n=0}^{\infty} (-1)^n\frac{(2\pi)^{2n}}{(2n)!}\right) \left(n+\frac{1}{2}\right)!\right]+\frac{\sqrt{\pi}}{4}\\ &=\frac{\sqrt{\pi}}{4}\left[1+\sum_{n=0}^{\infty} \frac{(-1)^n(2\pi)^{2n}}{2^{2n}}\frac{\left(n+\frac{1}{2}\right)\left(n-\frac{1}{2}\right)\cdots \left(\frac{3}{2}\right)}{n\left(n-\frac{1}{2}\right)(n-1)\cdots \left(\frac{3}{2}\right)(1)\left(\frac{1}{2}\right)}\right]\\ &=\frac{\sqrt{\pi}}{4}\left[1+2\sum_{n=0}^{\infty}\left(-\pi^2\right)^n\frac{\left(n+\frac{1}{2}\right)}{n!}\right]\\ &=\frac{\sqrt{\pi}}{4}\left[1+2(1-\pi^2)\sum_{n=0}^{\infty}\frac{\left(-\pi^2\right)^n}{n!}\right]\\ &=\frac{\sqrt{\pi}}{4}\left[1+2\left((\frac{1}{2}-\pi^2\right)e^{-\pi^2}\right]\\ &= 0.4427\ldots \end{aligned}

Shivang Jindal
Mar 9, 2015

I am not giving full solution here. Just giving sketch of my solution : Take, f ( a ) = x 2 e x 2 cos 2 ( a x ) f(a) = \int_{\infty}^{\infty} x^2e^{-x^2}\cos^2(ax) 1.) Compute f ( a ) f'(a)

2.) Apply parts

3.) Make differential equation

4.) Solve it

5.) Use f ( 0 ) = π 2 f(0) = \frac{\sqrt{\pi}}{2}

6.) Find f ( π ) f(\pi)

P.S: IF you didn't got anything, then ignore. I will post complete solution when i get time. [ After may -_- ]

Can you a post the complete solution? Thanks.

Pi Han Goh - 5 years, 6 months ago

I like this solution. You can use differentiation under the integral sign on nearly any integral, provided you're clever enough. :)

Milly Choochoo - 3 years, 9 months ago

Applying by parts wouldn't be as easy as you describe your method to be....

Rohan Shinde - 2 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...