Integration Fun

Calculus Level 3

25 4 36 4 16 x 3 8 x x 4 x 2 d x = ln a b \large \int_{\sqrt[4]{25}}^{\sqrt[4]{36} } \dfrac{16x^3-8x}{x^4-x^2} \, dx = \ln \frac ab

If the equation above holds true for coprime positive integers a a and b b , find the sum of digits of the number a b \sqrt{ \dfrac ab } written in decimal form.

5 9 20 16 Not enough information provided.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 21, 2018

Simpler solution from @John Frank .

I = 25 4 36 4 16 x 3 8 x x 4 x 2 d x Let u = x 4 x 2 d u = 4 x 3 2 x d x = 20 30 4 d u u = 4 ln u 20 30 = 4 ln 3 2 = ln 81 16 \begin{aligned} I & = \int_{\sqrt[4]{25}}^{\sqrt[4]{36}} \frac {16x^3-8x}{x^4-x^2} dx & \small \color{#3D99F6} \text{Let }u = x^4-x^2 \implies du = 4x^3-2x \ dx \\ & = \int_{20}^{30} \frac {4du}{u} \\ & = 4 \ln u \ \bigg|_{20}^{30} \\ & = 4 \ln \frac 32 \\ & = \ln \frac {81}{16} \end{aligned}

Therefore, 81 16 = 9 4 = 2.25 \sqrt{\dfrac {81}{16}} = \dfrac 94 = 2.25 and its digital sum is 2 + 2 + 5 = 9 2+2+5=\boxed{9} .


I = 25 4 36 4 16 x 3 8 x x 4 x 2 d x Simplify = 8 5 6 2 x 2 1 x ( x 1 ) ( x + 1 ) d x By partial fraction decomposition = 4 5 6 ( 2 x + 1 x 1 + 1 x + 2 ) d x = 4 [ 2 ln x + ln ( x 1 ) + ln ( x + 1 ) ] 5 6 = 4 [ ln ( x 4 x 2 ) ] 5 6 = 4 ( ln ( 36 6 ) ln ( 25 5 ) ) = 4 ln 3 2 = ln 81 16 \begin{aligned} I & = \int_{\sqrt[4]{25}}^{\sqrt[4]{36}} \frac {16x^3-8x}{x^4-x^2} dx & \small \color{#3D99F6} \text{Simplify} \\ & = 8 \int_{\sqrt 5}^{\sqrt 6} \frac {2x^2-1}{x(x-1)(x+1)} dx & \small \color{#3D99F6} \text{By partial fraction decomposition} \\ & = 4 \int_{\sqrt 5}^{\sqrt 6} \left(\frac 2x + \frac 1{x-1} + \frac 1{x+2} \right) dx \\ & = 4 \bigg[2\ln x + \ln (x-1) + \ln (x+1)\bigg]_{\sqrt 5}^{\sqrt 6} \\ & = 4 \bigg[\ln (x^4-x^2) \bigg]_{\sqrt 5}^{\sqrt 6} \\ & = 4 \left(\ln (36-6) - \ln(25-5) \right) \\ & = 4 \ln \frac 32 \\ & = \ln \frac {81}{16} \end{aligned}

Therefore, 81 16 = 9 4 = 2.25 \sqrt {\dfrac {81}{16}} = \dfrac 94 = 2.25 and its sum of digits is 2 + 2 + 5 = 9 2+2+5=\boxed{9} .

@Chew-Seong Cheong You could also have used the substitution u = x 4 x 2 u=x^4-x^2 .

John Frank - 3 years, 2 months ago

Log in to reply

Thanks. I will show your simpler solution.

Chew-Seong Cheong - 3 years, 2 months ago
Maksym Karunos
Aug 6, 2019

Factor out 8x in the numerator and x 2 x^2 in the bottom 36 4 25 4 8 x ( x 2 1 ) x 2 ( x 2 1 ) \displaystyle \int_{\sqrt[4]{36} }^{\sqrt[4]{25} } \frac{8x(x^2-1)}{x^2(x^2-1)} = 36 4 25 4 8 x \displaystyle \int_{\sqrt[4]{36} }^{\sqrt[4]{25} } \frac{8}{x} = 8 ln x = ln ( x 8 ) 8\ln|x| = \ln(x^8) Evaluate from 36 4 \sqrt[4]{36} to 25 4 \sqrt[4]{25}

ln 3 6 8 4 ln 2 5 8 4 \displaystyle\ln36^\frac{8}{4}-\ln25^\frac{8}{4} = ln 3 6 2 2 5 2 \displaystyle\ln\frac{36^2}{25^2}

Take square root a b \displaystyle\sqrt{\frac{a}{b}}

3 6 2 2 5 2 \displaystyle\sqrt{\frac{36^2}{25^2}} = ( 36 25 ) 2 \displaystyle\sqrt{(\frac{36}{25})^2} = 36 25 \displaystyle|\frac{36}{25}| = 1.44; 1+4+4 = 9 \boxed{9}

your factorized is wrong

gentian qehajaj - 1 year, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...