Integration Grandmaster - P1

Calculus Level 5

Given that F ( x ) = cos ( sin x ) + cos 2 x 1 + sin x sin ( sin x ) d x F(x) = \displaystyle \int \dfrac{\cos(\sin x) + \cos^2 x}{1 + \sin x \sin(\sin x)} dx , F ( π ) = 0 F(\pi)=0 , find F ( 1 ) F(1) .

Submit 10000 F ( 1 ) \lfloor 10000 F(1) \rfloor .


The answer is -17939.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Dec 10, 2020

Make the substitution y = cos ( 1 2 ( x sin x ) ) sin ( 1 2 ( x + sin x ) ) y \; = \; \frac{\cos\big(\tfrac12(x - \sin x)\big)}{\sin\big(\tfrac12(x + \sin x)\big)} Then

1 + y 2 = sin 2 ( 1 2 ( x + sin x ) ) + cos 2 ( 1 2 ( x sin x ) ) sin 2 ( 1 2 ( x + sin x ) ) = 1 cos ( x + sin x ) + cos ( x sin x ) + 1 2 sin 2 ( 1 2 ( x + sin x ) ) = 2 + cos ( x sin x ) cos ( x + sin x ) 2 sin 2 ( 1 2 ( x + sin x ) ) = 1 + sin x sin ( sin x ) sin 2 ( 1 2 ( x + sin x ) ) \begin{aligned} 1 + y^2 & = \; \frac{\sin^2\big(\tfrac12(x + \sin x)\big) + \cos^2\big(\tfrac12(x - \sin x)\big)}{\sin^2\big(\tfrac12(x + \sin x)\big)} \; = \; \frac{1 - \cos(x + \sin x) + \cos(x - \sin x) + 1}{2\sin^2\big(\tfrac12(x + \sin x)\big)}\\ & = \; \frac{2 + \cos(x - \sin x) - \cos(x + \sin x)}{2\sin^2\big(\tfrac12(x + \sin x)\big)} \; = \; \frac{1 + \sin x \sin(\sin x)}{\sin^2\big(\tfrac12(x + \sin x)\big)} \end{aligned} while d y d x = ( 1 cos x ) sin ( 1 2 ( x sin x ) ) 2 sin ( 1 2 ( x + sin x ) ) ( 1 + cos x ) cos ( 1 2 ( x sin x ) ) cos ( 1 2 ( x + sin x ) ) 2 sin 2 ( 1 2 ( x + sin x ) ) = 1 2 sin 2 ( 1 2 ( x + sin x ) ) [ ( 1 cos x ) sin ( 1 2 ( x sin x ) ) sin ( 1 2 ( x + sin x ) ) + ( 1 + cos x ) cos ( 1 2 ( x sin x ) ) cos ( 1 2 ( x + sin x ) ) ] = cos ( sin x ) + cos 2 x 2 sin 2 ( 1 2 ( x + sin x ) ) \begin{aligned} \frac{dy}{dx} & = \; -\frac{(1 - \cos x)\sin\big(\tfrac12(x-\sin x)\big)}{2\sin\big(\tfrac12(x + \sin x)\big)} - \frac{(1 + \cos x)\cos\big(\tfrac12(x - \sin x)\big)\cos\big(\tfrac12(x +\sin x)\big)}{2\sin^2\big(\tfrac12(x + \sin x)\big)} \\ & = \; -\frac{1}{2\sin^2\big(\tfrac12(x + \sin x)\big)}\left[ (1 - \cos x)\sin\big(\tfrac12(x - \sin x)\big)\sin\big(\tfrac12(x + \sin x)\big) + (1 + \cos x)\cos\big(\tfrac12(x - \sin x)\big)\cos\big(\tfrac12(x + \sin x)\big)\right] \\ & = \; -\frac{\cos(\sin x) + \cos^2x}{2\sin^2\big(\tfrac12(x + \sin x)\big)} \end{aligned} and hence F ( x ) = 2 d y 1 + y 2 F(x) \; =\; -2\int \frac{dy}{1 + y^2} Since F ( π ) = 0 F(\pi) = 0 we deduce that F ( x ) = 2 tan 1 ( cos ( 1 2 ( x sin x ) ) sin ( 1 2 ( x + sin x ) ) ) F(x) \; =\; -2\tan^{-1}\left(\frac{\cos\big(\tfrac12(x - \sin x)\big)}{\sin\big(\tfrac12(x + \sin x)\big)} \right) which makes 1 0 4 F ( 1 ) = 17939 \lfloor 10^4 F(1) \rfloor = \boxed{-17939} .

What is the motivation for this substitution?

Elijah L - 6 months ago

Log in to reply

... it works! I guess things like cos ( x ± sin x ) \cos(x\pm\sin x) and sin ( x ± sin x ) \sin(x\pm\sin x) are ways of getting terms like cos ( sin x ) \cos(\sin x) and sin x sin ( sin x ) \sin x \sin(\sin x)

Mark Hennings - 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...