Given that F ( x ) = ∫ 1 + sin x sin ( sin x ) cos ( sin x ) + cos 2 x d x , F ( π ) = 0 , find F ( 1 ) .
Submit ⌊ 1 0 0 0 0 F ( 1 ) ⌋ .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
What is the motivation for this substitution?
Log in to reply
... it works! I guess things like cos ( x ± sin x ) and sin ( x ± sin x ) are ways of getting terms like cos ( sin x ) and sin x sin ( sin x )
Problem Loading...
Note Loading...
Set Loading...
Make the substitution y = sin ( 2 1 ( x + sin x ) ) cos ( 2 1 ( x − sin x ) ) Then
1 + y 2 = sin 2 ( 2 1 ( x + sin x ) ) sin 2 ( 2 1 ( x + sin x ) ) + cos 2 ( 2 1 ( x − sin x ) ) = 2 sin 2 ( 2 1 ( x + sin x ) ) 1 − cos ( x + sin x ) + cos ( x − sin x ) + 1 = 2 sin 2 ( 2 1 ( x + sin x ) ) 2 + cos ( x − sin x ) − cos ( x + sin x ) = sin 2 ( 2 1 ( x + sin x ) ) 1 + sin x sin ( sin x ) while d x d y = − 2 sin ( 2 1 ( x + sin x ) ) ( 1 − cos x ) sin ( 2 1 ( x − sin x ) ) − 2 sin 2 ( 2 1 ( x + sin x ) ) ( 1 + cos x ) cos ( 2 1 ( x − sin x ) ) cos ( 2 1 ( x + sin x ) ) = − 2 sin 2 ( 2 1 ( x + sin x ) ) 1 [ ( 1 − cos x ) sin ( 2 1 ( x − sin x ) ) sin ( 2 1 ( x + sin x ) ) + ( 1 + cos x ) cos ( 2 1 ( x − sin x ) ) cos ( 2 1 ( x + sin x ) ) ] = − 2 sin 2 ( 2 1 ( x + sin x ) ) cos ( sin x ) + cos 2 x and hence F ( x ) = − 2 ∫ 1 + y 2 d y Since F ( π ) = 0 we deduce that F ( x ) = − 2 tan − 1 ( sin ( 2 1 ( x + sin x ) ) cos ( 2 1 ( x − sin x ) ) ) which makes ⌊ 1 0 4 F ( 1 ) ⌋ = − 1 7 9 3 9 .