Integration Grandmaster - P10

Calculus Level 4

Let

A = 0 1 cos 2 x tan x cot ( tan x ) sin 2 x tan ( tan x ) ln ( cos 2 x ) d x A = \int_{0}^{1} \dfrac{\cos 2x - \tan x \cot (\tan x)}{\sin 2x - \tan(\tan x)\ln (\cos^2 x)} dx

Submit 10000 A \lfloor 10000A \rfloor .


The answer is -2377.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Dec 13, 2020

Note first that

A = 0 1 cos 2 x tan x cot ( tan x ) sin 2 x tan ( tan x ) ln ( cos 2 x ) d x = 0 1 cos 2 x cot ( tan x ) tan x cot 2 ( tan x ) sin 2 x cot ( tan x ) 2 ln ( cos x ) d x A \; = \; \int_0^1 \frac{\cos 2x - \tan x\,\cot(\tan x)}{\sin 2x - \tan(\tan x)\,\ln(\cos^2x)}\,dx \; = \; \int_0^1 \frac{\cos 2x\cot(\tan x) - \tan x\,\cot^2(\tan x)}{\sin 2x \cot(\tan x) - 2\ln(\cos x)}\,dx and putting u = sin 2 x cot ( tan x ) 2 ln ( cos x ) u = \sin2x \cot(\tan x) - 2\ln(\cos x) for 0 < u < tan 1 π 0 < u < \tan^{-1}\pi gives lim x 0 u = 2 \lim_{x \to 0}u = 2 and d u d x = 2 cos 2 x cot ( tan x ) sin 2 x c o s e c 2 ( tan x ) sec 2 x + 2 tan x = 2 cos 2 x cot ( tan x ) 2 tan x ( c o s e c 2 ( tan x ) 1 ) = 2 [ cos 2 x cot ( tan x ) tan x cot 2 ( tan x ) ] \begin{aligned} \frac{du}{dx} & = \; 2\cos2x \cot(\tan x) - \sin2x \mathrm{cosec}^2(\tan x)\,\sec^2x + 2\tan x \; = \; 2\cos 2x \cot(\tan x) - 2\tan x\big(\mathrm{cosec}^2(\tan x) - 1\big)\\ & = \; 2\big[\cos2x \cot(\tan x) - \tan x \cot^2(\tan x)\big] \end{aligned} and hence, putting α = sin 2 cot ( tan 1 ) 2 ln ( cos 1 ) \alpha = \sin2 \cot(\tan 1) - 2\ln(\cos 1) we see that A = 2 α d u 2 u = 1 2 ln ( α 2 ) = 1 2 ln ( 1 2 sin 2 cot ( tan 1 ) ln ( cos 1 ) ) A \; = \; \int_2^\alpha \frac{du}{2u} \; = \; \tfrac12\ln\big(\tfrac{\alpha}{2}\big) \; = \; \tfrac12\ln\left(\tfrac12\sin 2 \cot(\tan 1) - \ln(\cos 1)\right) which makes 10000 A = 2377 \lfloor 10000 A\rfloor = \boxed{-2377} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...