Integration Grandmaster - P11

Calculus Level 4

Let

A = 0 1 1 sin 6 x + cos 6 x d x A = \int_{0}^{1} \dfrac{1}{\sin^6 x + \cos^6 x} dx

Submit 10000 A \lfloor 10000A \rfloor .


The answer is 23120.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Dwaipayan Shikari
Dec 12, 2020

0 1 1 sin 6 x + cos 6 x d x = 0 1 1 1 3 sin 2 x cos 2 x d x \int_0^1 \frac{1}{\sin^6 x + \cos^6 x} dx= \int_0^1 \frac{1}{1-3\sin^2 x\cos^2 x}dx Taking 2 x = u 2x= u , = 0 1 4 4 3 sin 2 ( 2 x ) d x = 0 2 2 4 3 sin 2 u d u =\int_0^1 \frac{4}{4-3\sin^2(2x)} dx=\int_0^2 \frac{2}{4-3\sin^2 u}du The integral is same as 0 2 2 4 cos 2 u + sin 2 u d u = 2 0 2 cosec 2 u 4 cot 2 u + 1 d u \int_0^2\frac{2}{4\cos^2 u+\sin^2 u} du=2\int_0^2 \frac{\cosec^2 u}{4\cot^2u +1} du taking c o t u = t cotu=t the integral becomes ,

= 1 2 cot ( 2 ) d t t 2 + 1 4 =-\frac{1}{2} \int_∞^{\cot(2)} \frac{dt}{t^2 +\frac{1}{4}} = [ tan 1 ( 2 t ) ] cot 2 = [-\tan^{-1}(2t)]_∞^{\cot2} π 2 tan 1 ( 2 cot 2 ) \implies{\boxed{\frac{π}{2} -\tan^{-1}(2\cot2)}} Answer is [ 10000 × ( π 2 tan 1 ( 2 cot 2 ) ) ] = 23120 \color{#20A900}[10000×(\frac{π}{2} -\tan^{-1}(2\cot2))]=23120

Chew-Seong Cheong
Dec 12, 2020

A = 0 1 1 sin 6 x + cos 6 x d x Note that a 3 + b 3 = ( a + b ) ( a 2 + b 2 a b ) = 0 1 1 ( sin 2 x + cos 2 x ) ( ( sin 2 x + cos 2 x ) 2 3 sin 2 x cos 2 x ) d x = ( a + b ) ( ( a + b ) 2 2 a b ) = 0 1 1 1 3 sin 2 x cos 2 x d x Multiply up and down by sec 4 x . = 0 1 sec 4 x sec 4 x 3 tan 2 x d x = 0 1 ( 1 + tan 2 x ) sec 2 x ( 1 + tan 2 x ) 2 3 tan 2 x d x Let t = tan x d t = sec 2 x d x = 0 tan 1 1 + t 2 ( 1 + t 2 ) 2 3 t 2 d t = 0 tan 1 t 2 + 1 ( t 2 3 t + 1 ) ( t 2 + 3 t + 1 ) d t By partial fraction decomposition = 0 tan 1 1 2 ( 1 t 2 3 t + 1 + 1 t 2 + 3 t + 1 ) d t = 0 tan 1 1 2 ( 1 ( t 3 2 ) 2 + 1 4 + 1 ( t + 3 2 ) 2 + 1 4 ) d t = 0 tan 1 ( 2 ( 2 t 3 ) 2 + 1 + 2 ( 2 t + 3 ) 2 + 1 ) d t = tan 1 ( 2 t 3 ) + tan 1 ( 2 t + 3 ) 0 tan 1 = tan 1 ( 2 tan 1 3 ) + π 3 + tan 1 ( 2 tan 1 + 3 ) π 3 = tan 1 ( 3 + 2 tan 1 ) tan 1 ( 3 2 tan 1 ) 2.31200 \begin{aligned} A & = \int_0^1 \frac 1\blue{\sin^6 x + \cos^6 x} dx & \small \blue{\text{Note that }a^3+b^3 = (a+b)(a^2+b^2-ab)} \\ & = \int_0^1 \frac 1{(\sin^2 x + \cos^2 x)\left((\sin^2 x + \cos^2 x)^2 - 3\sin^2 x \cos^2 x\right)} dx & \small \blue{= (a+b)((a+b)^2 - 2ab)} \\ & = \int_0^1 \frac 1{1-3\sin^2 x \cos^2 x} dx & \small \blue{\text{Multiply up and down by }\sec^4 x.} \\ & = \int_0^1 \frac {\sec^4 x}{\sec^4 x - 3 \tan^2 x} dx = \int_0^1 \frac {(1+\tan^2 x)\sec^2 x}{(1+\tan^2 x)^2 - 3 \tan^2 x} dx & \small \blue{\text{Let }t = \tan x \implies dt = \sec^2 x \ dx} \\ & = \int_0^{\tan 1} \frac {1+t^2}{(1+t^2)^2 -3t^2} dt \\ & = \int_0^{\tan 1} \frac {t^2+1}{(t^2-\sqrt 3t + 1)(t^2+\sqrt 3t+1)} dt & \small \blue{\text{By partial fraction decomposition}} \\ & = \int_0^{\tan 1} \frac 12 \left(\frac 1{t^2-\sqrt 3t + 1} + \frac 1{t^2+\sqrt 3t+1} \right) dt \\ & = \int_0^{\tan 1} \frac 12 \left(\frac 1{\left(t- \frac {\sqrt 3}2 \right)^2 + \frac 14} + \frac 1{\left(t+\frac {\sqrt 3}2 \right)^2 + \frac 14} \right) dt \\ & = \int_0^{\tan 1} \left(\frac 2{(2t- \sqrt 3)^2 + 1} + \frac 2{(2t+\sqrt 3)^2 + 1} \right) dt \\ & = \tan^{-1}(2t - \sqrt 3) + \tan^{-1} (2t + \sqrt 3) \ \bigg|_0^{\tan 1} \\ & = \tan^{-1} (2\tan 1 - \sqrt 3) + \frac \pi 3 + \tan^{-1} (2\tan 1 + \sqrt 3) - \frac \pi 3 \\ & = \tan^{-1} (\sqrt 3 + 2\tan 1) - \tan^{-1} (\sqrt 3-2\tan 1) \\ & \approx 2.31200 \end{aligned}

Therefore 10000 A = 23120 \lfloor 10000A\rfloor = \boxed{23120} .

Small typo on line 2 : sin^x

Vijay Simha - 6 months ago

Log in to reply

Thanks. I have amended it.

Chew-Seong Cheong - 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...