Integration Grandmaster - P12

Calculus Level 4

Let

A = 0 1 sin 4 x sin 8 x + cos 8 x d x A = \int_{0}^{1} \dfrac{\sin 4x}{\sin^8 x + \cos^8 x} dx

Submit 10000 A \lfloor 10000A \rfloor .


The answer is 7737.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 14, 2020

A = 0 1 sin 4 x sin 8 x + cos 8 x d x = 0 1 2 sin 2 x cos 2 x ( sin 4 x + cos 4 x ) 2 2 sin 4 x cos 4 x d x = 0 1 2 sin 2 x cos 2 x ( ( sin 2 x + cos 2 x ) 2 2 sin 2 x cos 2 x ) 2 1 8 sin 4 2 x d x = 0 1 2 sin 2 x cos 2 x ( 1 1 2 sin 2 2 x ) 2 1 8 sin 4 2 x d x = 0 1 2 sin 2 x cos 2 x 1 sin 2 2 x + 1 8 sin 4 2 x d x Let u = sin 2 x d u = 2 cos 2 x d x = 0 sin 2 8 u u 4 8 u 2 + 8 d u = 0 sin 2 2 4 t 2 8 t + 8 d t Let t = u 2 d t = 2 u d u = 0 sin 2 2 4 ( t 4 2 2 ) ( t 4 + 2 2 ) d t = 1 2 0 sin 2 2 ( 1 t 4 2 2 1 t 4 + 2 2 ) d t = 1 2 ln ( t 4 2 2 t 4 + 2 2 ) 0 sin 2 2 0.773725069 \begin{aligned} A & = \int_0^1 \frac {\sin 4x}{\sin^8 x + \cos^8 x} dx \\ & = \int_0^1 \frac {2\sin 2x \cos 2x}{(\sin^4 x + \cos^4 x)^2 - 2\sin^4 x \cos^4 x} dx \\ & = \int_0^1 \frac {2\sin 2x \cos 2x}{\left((\sin^2 x + \cos^2 x)^2-2\sin^2 x \cos^2 x\right)^2 - \frac 18 \sin^4 2 x} dx \\ & = \int_0^1 \frac {2\sin 2x \cos 2x}{\left(1-\frac 12 \sin^2 2 x \right)^2 - \frac 18 \sin^4 2 x} dx \\ & = \int_0^1 \frac {2\sin 2x \cos 2x}{1 - \sin^2 2x + \frac 18 \sin^4 2 x} dx & \small \blue{\text{Let }u = \sin 2x \implies du = 2 \cos 2x\ dx} \\ & = \int_0^{\sin 2} \frac {8u}{u^4 - 8u^2 + 8} du = \int_0^{\sin^2 2} \frac 4{t^2 - 8t + 8} dt & \small \blue{\text{Let }t = u^2 \implies dt = 2u \ du} \\ & = \int_0^{\sin^2 2} \frac 4{(t-4-2\sqrt 2)(t-4+2\sqrt 2)} dt \\ & = \frac 1{\sqrt 2} \int_0^{\sin^2 2} \left(\frac 1{t-4-2\sqrt 2} - \frac 1{t-4+2\sqrt 2} \right) dt \\ & = \frac 1{\sqrt 2} \ln \left(\frac {|t-4-2\sqrt 2|}{|t-4+2\sqrt 2|} \right) \bigg|_0^{\sin^2 2} \approx 0.773725069 \end{aligned}

Therefore 10000 A = 7737 \lfloor 10000 A\rfloor = \boxed{7737} .

Mark Hennings
Dec 14, 2020

Note that sin 4 x sin 8 x + cos 8 x 16 sin 4 x ( cos 2 x 1 ) 4 + ( cos 2 x + 1 ) 4 8 sin 4 x cos 4 2 x + 6 cos 2 2 x + 1 32 sin 4 x ( cos 4 x + 1 ) 2 + 12 ( cos 4 x + 1 ) + 4 32 sin 4 x cos 2 4 x + 14 cos 4 x + 17 = 2 2 ( 1 cos 4 x + 7 4 2 1 cos 4 x + 7 + 4 2 ) sin 4 x \begin{aligned} \frac{\sin 4x}{\sin^8x + \cos^8x} & \equiv \; \frac{16\sin^4x}{(\cos2x-1)^4 + (\cos2x+1)^4} \; \equiv \; \frac{8\sin4x}{\cos^42x + 6\cos^22x + 1} \\ & \equiv \; \frac{32\sin4x}{(\cos4x+1)^2 + 12(\cos4x+1)+4} \; \equiv \; \frac{32\sin4x}{\cos^24x + 14\cos4x + 17} \; = \; 2\sqrt{2}\left(\frac{1}{\cos4x + 7 - 4\sqrt{2}} - \frac{1}{\cos4x + 7 + 4\sqrt{2}}\right)\sin4x \end{aligned} so that A = 1 2 [ ln ( cos 4 x + 7 + 4 2 cos 4 x + 7 4 2 ) ] 0 1 = 1 2 ln ( ( cos 4 + 7 + 4 2 ) ( 2 1 ) ( cos 4 + 7 4 2 ) ( 2 + 1 ) ) = 1 2 ln ( 3 2 + 1 + ( 2 1 ) cos 4 3 2 1 + ( 2 + 1 ) cos 4 ) \begin{aligned} A & = \; \frac{1}{\sqrt{2}}\left[ \ln\left(\frac{\cos4x + 7 + 4\sqrt{2}}{\cos4x + 7 - 4\sqrt{2}}\right)\right]_0^1 \; = \; \frac{1}{\sqrt{2}}\ln\left(\frac{(\cos4 + 7 + 4\sqrt{2})(\sqrt{2}-1)}{(\cos4 + 7 - 4\sqrt{2})(\sqrt{2}+1)}\right) \; = \; \frac{1}{\sqrt{2}}\ln\left(\frac{3\sqrt{2}+1 + (\sqrt{2}-1)\cos4}{3\sqrt{2}-1 + (\sqrt{2}+1)\cos4}\right) \end{aligned} which makes 10000 A = 7737 \lfloor 10000A\rfloor = \boxed{7737} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...