Let
A = ∫ 0 1 2 + sin 2 x cos x d x
Submit ⌊ 1 0 0 0 0 A ⌋ .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
If we write u = 2 + sin 2 x cos x + sin x v = 2 + sin 2 x cos x − sin x then 2 + sin 2 x 1 = 2 1 [ 1 − u 2 1 d x d u − 1 + v 2 1 d x d v ] so that ∫ 2 + sin 2 x 1 d x = 4 1 ln ( 1 − u 1 + u ) − 2 1 tan − 1 v + c Since u ( 0 ) = v ( 0 ) = 2 1 u ( 1 ) = 2 + sin 2 cos 1 + sin 1 , v ( 1 ) = 2 + sin 2 cos 1 − sin 1 we derive A . Hence ⌊ 1 0 0 0 0 A ⌋ = 5 1 8 1 .
Problem Loading...
Note Loading...
Set Loading...
A = ∫ 0 1 2 + sin ( 2 x ) cos x d x A = 2 1 ∫ 0 1 2 + sin ( 2 x ) 2 cos x d x A = 2 1 ∫ 0 1 2 + sin ( 2 x ) ( cos x − sin x ) + ( cos x + sin x ) d x A = 2 1 ∫ 0 1 2 + sin ( 2 x ) cos x − sin x d x + 2 1 ∫ 0 1 2 + sin ( 2 x ) cos x + sin x d x A = 2 1 ∫ 0 1 1 + ( 1 + sin ( 2 x ) ) cos x − sin x d x + 2 1 ∫ 0 1 3 − ( 1 − sin ( 2 x ) ) cos x + sin x d x A = 2 1 ∫ 0 1 1 + ( sin 2 x + cos 2 x + 2 sin x cos x ) cos x − sin x d x + 2 1 ∫ 0 1 3 − ( sin 2 x + cos 2 x − 2 sin x cos x ) cos x + sin x d x A = 2 1 ∫ 0 1 1 + ( sin x + cos x ) 2 cos x − sin x d x + 2 1 ∫ 0 1 3 − ( sin x − cos x ) 2 cos x + sin x d x A = A 1 + A 2 A 1 = 2 1 ∫ 0 1 1 + ( sin x + cos x ) 2 cos x − sin x d x A 2 = 2 1 ∫ 0 1 3 − ( sin x − cos x ) 2 cos x + sin x d x
Taking sin x + cos x = z transforms A 1 to:
A 1 = 2 1 ∫ 1 sin 1 + cos 1 1 + z 2 d z
Taking sin x − cos x = z transforms A 2 to:
A 2 = 2 1 ∫ − 1 sin 1 − cos 1 3 − z 2 d z
Now, A 1 and A 2 can be evaluated by using standard formulas or by trigonometric substitution. I have chosen to leave out these steps as they are doable, but tedious.
The result is:
⌊ 1 0 0 0 0 A ⌋ = 5 1 8 1