Integration Grandmaster - P13

Calculus Level 4

Let

A = 0 1 cos x 2 + sin 2 x d x A = \int_{0}^{1} \dfrac{\cos x}{\sqrt{2+\sin 2x}} dx

Submit 10000 A \lfloor 10000A \rfloor .


The answer is 5181.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Karan Chatrath
Dec 13, 2020

A = 0 1 cos x 2 + sin ( 2 x ) d x A = \int_{0}^{1} \frac{\cos{x}}{\sqrt{2 + \sin(2x)}} \ dx A = 1 2 0 1 2 cos x 2 + sin ( 2 x ) d x A = \frac{1}{2} \int_{0}^{1} \frac{2\cos{x}}{\sqrt{2 + \sin(2x)}} \ dx A = 1 2 0 1 ( cos x sin x ) + ( cos x + sin x ) 2 + sin ( 2 x ) d x A = \frac{1}{2} \int_{0}^{1} \frac{(\cos{x}-\sin{x}) +(\cos{x}+\sin{x}) }{\sqrt{2 + \sin(2x)}} \ dx A = 1 2 0 1 cos x sin x 2 + sin ( 2 x ) d x + 1 2 0 1 cos x + sin x 2 + sin ( 2 x ) d x A = \frac{1}{2} \int_{0}^{1} \frac{\cos{x}-\sin{x}}{\sqrt{2 + \sin(2x)}} \ dx + \frac{1}{2} \int_{0}^{1} \frac{\cos{x}+\sin{x}}{\sqrt{2 + \sin(2x)}} \ dx A = 1 2 0 1 cos x sin x 1 + ( 1 + sin ( 2 x ) ) d x + 1 2 0 1 cos x + sin x 3 ( 1 sin ( 2 x ) ) d x A = \frac{1}{2} \int_{0}^{1} \frac{\cos{x}-\sin{x}}{\sqrt{1 + (1 + \sin(2x))}} \ dx + \frac{1}{2} \int_{0}^{1} \frac{\cos{x}+\sin{x}}{\sqrt{3 -(1 - \sin(2x))}} \ dx A = 1 2 0 1 cos x sin x 1 + ( sin 2 x + cos 2 x + 2 sin x cos x ) d x + 1 2 0 1 cos x + sin x 3 ( sin 2 x + cos 2 x 2 sin x cos x ) d x A = \frac{1}{2} \int_{0}^{1} \frac{\cos{x}-\sin{x}}{\sqrt{1 + (\sin^2{x} + \cos^2{x} + 2\sin{x}\cos{x})}} \ dx + \frac{1}{2} \int_{0}^{1} \frac{\cos{x}+\sin{x}}{\sqrt{3 -(\sin^2{x} + \cos^2{x} - 2\sin{x}\cos{x})}} \ dx A = 1 2 0 1 cos x sin x 1 + ( sin x + cos x ) 2 d x + 1 2 0 1 cos x + sin x 3 ( sin x cos x ) 2 d x A = \frac{1}{2} \int_{0}^{1} \frac{\cos{x}-\sin{x}}{\sqrt{1 + (\sin{x}+\cos{x})^2}} \ dx + \frac{1}{2} \int_{0}^{1} \frac{\cos{x}+\sin{x}}{\sqrt{3 -(\sin{x}-\cos{x})^2}} \ dx A = A 1 + A 2 A = A_1 + A_2 A 1 = 1 2 0 1 cos x sin x 1 + ( sin x + cos x ) 2 d x A_1 = \frac{1}{2} \int_{0}^{1} \frac{\cos{x}-\sin{x}}{\sqrt{1 + (\sin{x}+\cos{x})^2}} \ dx A 2 = 1 2 0 1 cos x + sin x 3 ( sin x cos x ) 2 d x A_2 = \frac{1}{2} \int_{0}^{1} \frac{\cos{x}+\sin{x}}{\sqrt{3 -(\sin{x}-\cos{x})^2}} \ dx

Taking sin x + cos x = z \sin{x}+\cos{x}=z transforms A 1 A_1 to:

A 1 = 1 2 1 sin 1 + cos 1 d z 1 + z 2 A_1 =\frac{1}{2} \int_{1}^{\sin{1} + \cos{1}} \frac{dz}{\sqrt{1 +z^2}}

Taking sin x cos x = z \sin{x}-\cos{x}=z transforms A 2 A_2 to:

A 2 = 1 2 1 sin 1 cos 1 d z 3 z 2 A_2 =\frac{1}{2} \int_{-1}^{\sin{1} - \cos{1}} \frac{dz}{\sqrt{3 -z^2}}

Now, A 1 A_1 and A 2 A_2 can be evaluated by using standard formulas or by trigonometric substitution. I have chosen to leave out these steps as they are doable, but tedious.

The result is:

10000 A = 5181 \lfloor 10000A \rfloor = 5181

Mark Hennings
Dec 14, 2020

If we write u = cos x + sin x 2 + sin 2 x v = cos x sin x 2 + sin 2 x u \;= \; \frac{\cos x + \sin x}{\sqrt{2 + \sin2x}} \hspace{2cm} v \; = \; \frac{\cos x - \sin x}{\sqrt{2 + \sin2x}} then 1 2 + sin 2 x = 1 2 [ 1 1 u 2 d u d x 1 1 + v 2 d v d x ] \frac{1}{\sqrt{2 + \sin2x}} \; = \; \frac12\left[ \frac{1}{1-u^2}\frac{du}{dx} - \frac{1}{1+v^2}\frac{dv}{dx}\right] so that 1 2 + sin 2 x d x = 1 4 ln ( 1 + u 1 u ) 1 2 tan 1 v + c \int \frac{1}{\sqrt{2 + \sin2x}}\,dx \; = \; \tfrac14\ln\left(\tfrac{1+u}{1-u}\right) - \tfrac12\tan^{-1}v + c Since u ( 0 ) = v ( 0 ) = 1 2 u ( 1 ) = cos 1 + sin 1 2 + sin 2 , v ( 1 ) = cos 1 sin 1 2 + sin 2 u(0) = v(0)= \tfrac{1}{\sqrt{2}} \hspace{2cm} u(1) = \frac{\cos1 + \sin1}{\sqrt{2 + \sin2}} \;,\; v(1) = \frac{\cos1 - \sin1}{\sqrt{2+\sin2}} we derive A A . Hence 10000 A = 5181 \lfloor 10000A\rfloor = \boxed{5181} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...