Integration Grandmaster - P15

Calculus Level 5

Let

A = 1 2 x + a 2 x a d x A = \int_{1}^{2} \sqrt{x+a^2\sqrt{x-a}}\ dx

Submit 10000 A \lfloor 10000A \rfloor for a = 1 a=1 .


The answer is 14605.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chew-Seong Cheong
Dec 14, 2020

A = 1 2 x + x 1 d x Let u 2 = x = 1 = 2 0 1 u u 2 + u + 1 d u 2 u d u = d x = 2 0 1 u ( u + 1 2 ) 2 + 3 4 d u Let u + 1 2 = 3 2 sinh t = 2 sinh 1 1 3 sinh 1 3 ( 3 2 sinh t 1 2 ) 3 4 cosh 2 t d t d u = 3 2 cosh t d t = 3 3 4 sinh 1 1 3 sinh 1 3 cosh 2 t sinh t d t 3 4 sinh 1 1 3 sinh 1 3 cosh 2 t d t Let v = cosh t = 3 3 4 2 3 2 v 2 d v 3 8 sinh 1 1 3 sinh 1 3 ( cosh 2 t + 1 ) d t d v = sinh t d t = [ 3 v 3 4 ] 2 3 2 [ 3 sinh 2 t 16 + 3 t 8 ] sinh 1 1 3 sinh 1 3 = 2 3 2 3 3 3 4 + 1 4 3 sinh 1 3 8 + 3 ln 3 16 = 60 3 20 + 9 ln 3 18 sinh 1 3 48 1.46052743 \begin{aligned} A & = \int_1^2 \sqrt{x+\sqrt{x-1}}\ dx & \small \blue{\text{Let }u^2 = x = 1} \\ & = 2 \int_0^1 u\sqrt{u^2 + u + 1}\ du & \small \blue{\implies 2u \ du = dx} \\ & = 2 \int_0^1 u\sqrt{\left(u + \frac 12\right)^2 + \frac 34}\ du & \small \blue{\text{Let }u + \frac 12 = \frac {\sqrt 3}2\sinh t} \\ & = 2 \int_{\sinh^{-1}\frac 1{\sqrt 3}}^{\sinh^{-1}\sqrt 3} \left(\frac {\sqrt 3}2 \sinh t - \frac 12 \right) \cdot \frac 34 \cosh^2 t \ dt & \small \blue{\implies du = \frac {\sqrt 3}2 \cosh t\ dt} \\ & = \frac {3\sqrt 3}4 \blue{\int_{\sinh^{-1}\frac 1{\sqrt 3}}^{\sinh^{-1}\sqrt 3} \cosh^2 t \sinh t \ dt} - \frac 34 \int_{\sinh^{-1}\frac 1{\sqrt 3}}^{\sinh^{-1}\sqrt 3} \cosh^2 t \ dt & \small \blue{\text{Let }v = \cosh t} \\ & = \frac {3\sqrt 3}4 \blue{\int_{\frac 2{\sqrt 3}}^2 v^2 \ dv} - \frac 38 \int_{\sinh^{-1}\frac 1{\sqrt 3}}^{\sinh^{-1}\sqrt 3} (\cosh 2 t + 1) \ dt & \small \blue{\implies dv = \sinh t \ dt} \\ & = \left[\frac {\sqrt 3v^3}4 \right]_{\frac 2{\sqrt 3}}^2 - \left[\frac {3\sinh 2t}{16} + \frac {3t}8 \right]_{\sinh^{-1}\frac 1{\sqrt 3}}^{\sinh^{-1}\sqrt 3} \\ & = 2\sqrt 3 - \frac 23 - \frac {3\sqrt 3}4 + \frac 14 - \frac {3\sinh^{-1}\sqrt 3}8 + \frac {3\ln 3}{16} \\ & = \frac {60\sqrt 3-20+9\ln 3 - 18\sinh^{-1} \sqrt 3}{48} \approx 1.46052743 \end{aligned}

Therefore 10000 A = 14605 \lfloor 10000 A \rfloor = \boxed{14605} .

Hi Alice Smith (it seems I cant mention you for some reason), could you organise the integration grandmaster series into a note? Because that way I can add it into my collection series RadMaths and it will be easier to keep track :)

Jeff Giff - 3 months, 1 week ago

Log in to reply

Never mind :) I’ll have it organised in a day :)

Jeff Giff - 3 months, 1 week ago
Dwaipayan Shikari
Dec 14, 2020

The integral is Taking x 1 = t 2 x-1=t^2 1 2 x + x 1 d x = 0 1 2 t t 2 + t + 1 d t = 0 1 ( 2 t + 1 ) t 2 + t + 1 0 1 t 2 + t + 1 \int_1^2 \sqrt{x+\sqrt{x-1}}dx = \int_0^1 2t\sqrt{t^2 +t+1} dt = \int_0^1(2t+1)\sqrt{t^2+t+1} -\int_0^1 \sqrt{t^2+t+1} = [ 2 3 ( t 2 + t + 1 ) 3 2 2 t + 1 4 t 2 + t + 1 3 8 sinh 1 ( 2 t + 1 3 ) ] 0 1 =[ \frac{2}{3}{(t^2+t+1)}^{\frac{3}{2}} - \frac{2t+1}{4}\sqrt{t^2 +t+1} -\frac{3}{8} \sinh^{-1}{(\frac{2t+1}{\sqrt{3}})} ]_0^1 = 2 3 1 3 3 3 1 4 3 8 ( sinh 1 ( 3 ) sinh 1 ( 1 3 ) ) = 2\sqrt{3}-\frac{1}{3} -\frac{3\sqrt{3}-1}{4}-\frac{3}{8} (\sinh^{-1}(\sqrt{3}) -\sinh^{-1}{(\frac{1}{\sqrt{3}})}) = 1.4605 = \boxed{1.4605} Answer is [ 10000 × 1.4605 ] = 14605 \color{#20A900}[10000×1.4605]= 14605 Note

t 2 + t + 1 d t = 2 t + 1 4 t 2 + t + 1 + 3 8 sinh 1 ( 2 t + 1 3 ) \int \sqrt{t^2 +t+1}dt = \frac{2t+1}{4} \sqrt{t^2+t+1} +\frac{3}{8} \sinh^{-1} (\frac{2t+1}{\sqrt{3}})

Where is d t dt in the first line 3 r d 3_{rd} integral and 4 t h 4_{th}

Zakir Husain - 5 months, 1 week ago
ChengYiin Ong
Jan 18, 2021

A = 1 2 x + x 1 d x Let u = x 1 = 2 0 1 u ( u + 1 2 ) 2 + 3 4 d u Let t = u + 1 2 = 2 1 2 3 2 t t 2 + 3 4 d t 1 2 3 2 t 2 + 3 4 d t Let t = 3 4 tan θ = 2 ( t 2 + 3 4 ) 3 1 2 3 2 3 4 π 3 π 6 sec 3 θ d θ = 2 ( t 2 + 3 4 ) 3 1 2 3 2 3 4 ( 1 2 sec θ tan θ + 1 2 ln sec θ + tan θ ) π 3 π 6 sec 3 x d x = 1 2 ( sec x tan x + ln sec x + tan x ) + C 1.4605274 \begin{aligned} A=&\int_{1}^{2} \sqrt{x+\sqrt{x-1}} \, dx \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \textrm{Let} \ \ u=\sqrt{x-1} \\ =&2\int_{0}^{1} u\sqrt{\left(u+\frac{1}{2}\right)^2+\frac{3}{4}} \, du \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \textrm{Let} \ \ t=u+\frac{1}{2} \\ =& 2\int_{\frac{1}{2}}^{\frac{3}{2}} t\sqrt{t^2+\frac{3}{4}} \, dt-\int_{\frac{1}{2}}^{\frac{3}{2}} \sqrt{t^2+\frac{3}{4}} \,dt \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \textrm{Let} \ \ t=\sqrt{\frac{3}{4}}\tan \theta \\ =& \left . \dfrac{2(t^2+\frac{3}{4})}{3}\right|_{\frac{1}{2}}^{\frac{3}{2}} -\frac{3}{4}\int_{\frac{\pi}{3}}^\frac{\pi}{6} \sec^3 \theta \, d\theta \\ =& \left . \dfrac{2(t^2+\frac{3}{4})}{3}\right|_{\frac{1}{2}}^{\frac{3}{2}}- \frac{3}{4}\left( \left . \frac{1}{2} \sec \theta \tan \theta +\frac{1}{2} \ln |\sec \theta +\tan \theta | \right)\right|_{\frac{\pi}{3}}^{\frac{\pi}{6}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \int \sec^3 x \, dx= \frac{1}{2} \left(\sec x \tan x +\ln|\sec x+\tan x|\right) +C\\ \approx& 1.4605274\ldots \end{aligned}

Mark Hennings
Dec 14, 2020

Suppose that 0 < a < 2 2 3 0 < a < 2^{\frac23} . If we put u = x a + 1 2 a 2 u = \sqrt{x-a} + \tfrac12a^2 , then u 2 + 1 4 a ( 4 a 3 ) = x + a 2 x a d x d u = 2 u a 2 u^2 + \tfrac14a(4-a^3) \; = \; x + a^2\sqrt{x-a} \hspace{2cm} \frac{dx}{du} \; = \; 2u-a^2 and hence A ( a ) = 1 2 x + a 2 x a d x = u ( 1 ) u ( 2 ) u 2 + 1 4 a ( 4 a 3 ) ( 2 u a 2 ) d u = [ 2 3 ( u 2 + 1 4 a ( 4 a 3 ) ) 3 2 ] u ( 1 ) u ( 2 ) a 2 1 2 u 2 + 1 4 a ( 4 a 3 ) d u = [ 2 3 ( u 2 + 1 4 a ( 4 a 3 ) ) 3 2 ] u ( 1 ) u ( 2 ) 1 4 a 3 ( 4 a 3 ) v ( 1 ) v ( 2 ) cosh 2 v d v = [ 2 3 ( u 2 + 1 4 a ( 4 a 3 ) ) 3 2 ] u ( 1 ) u ( 2 ) 1 8 a 3 ( 4 a 3 ) v ( 1 ) v ( 2 ) ( cosh 2 v + 1 ) d v = [ 2 3 ( u 2 + 1 4 a ( 4 a 3 ) ) 3 2 ] u ( 1 ) u ( 2 ) 1 8 a 3 ( 4 a 3 ) [ sinh v cosh v + v ] v ( 1 ) v ( 2 ) = [ 2 3 ( u 2 + 1 4 a ( 4 a 3 ) ) 3 2 1 2 a 2 u ( u 2 + 1 4 a ( 4 a 3 ) ) 1 2 ] u ( 1 ) u ( 2 ) 1 8 a 3 ( 4 a 3 ) [ v ] v ( 1 ) v ( 2 ) = [ 2 3 ( x + a 2 x a ) 3 2 1 2 a 2 ( x a + 1 2 a 2 ) x + a 2 x a ] 1 2 1 8 a 3 ( 4 a 3 ) [ sinh 1 ( 2 u a ( 4 a 3 ) ) ] u ( 1 ) u ( 2 ) \begin{aligned} A(a) & = \; \int_1^2 \sqrt{x + a^2\sqrt{x-a}}\,dx \; = \; \int_{u(1)}^{u(2)}\sqrt{u^2 + \tfrac14a(4-a^3)}(2u - a^2)\,du \\ & = \; \Big[\tfrac23\big(u^2 + \tfrac14a(4-a^3)\big)^{\frac32}\Big]_{u(1)}^{u(2)} - a^2\int_1^2 \sqrt{u^2 + \tfrac14a(4-a^3)}\,du \\ & = \; \Big[\tfrac23\big(u^2 + \tfrac14a(4-a^3)\big)^{\frac32}\Big]_{u(1)}^{u(2)} - \tfrac14a^3(4-a^3)\int_{v(1)}^{v(2)} \cosh^2v\,dv \\ & = \; \Big[\tfrac23\big(u^2 + \tfrac14a(4-a^3)\big)^{\frac32}\Big]_{u(1)}^{u(2)} - \tfrac18a^3(4-a^3)\int_{v(1)}^{v(2)} (\cosh2v+1)\,dv \\ & = \; \Big[\tfrac23\big(u^2 + \tfrac14a(4-a^3)\big)^{\frac32}\Big]_{u(1)}^{u(2)} - \tfrac18a^3(4-a^3)\Big[\sinh v \cosh v + v \Big]_{v(1)}^{v(2)} \\ & = \; \Big[\tfrac23\big(u^2 + \tfrac14a(4-a^3)\big)^{\frac32} - \tfrac12a^2u\big(u^2 + \tfrac14a(4-a^3)\big)^{\frac12}\Big]_{u(1)}^{u(2)} - \tfrac18a^3(4-a^3)\Big[v\Big]_{v(1)}^{v(2)} \\ & = \; \left[\tfrac23\big(x + a^2\sqrt{x-a}\big)^{\frac32} - \tfrac12a^2(\sqrt{x-a} + \tfrac12a^2)\sqrt{x + a^2\sqrt{x-a}}\right]_1^2 - \tfrac18a^3(4-a^3)\left[\sinh^{-1}\left(\frac{2u}{\sqrt{a(4-a^3)}}\right)\right]_{u(1)}^{u(2)} \end{aligned} In particular A ( 1 ) = [ 2 3 ( x + x 1 ) 3 2 1 2 ( x 1 + 1 2 ) x + x 1 ] 1 2 3 8 [ sinh 1 ( 2 u 3 ) ] 1 2 3 2 = 5 4 3 5 12 3 8 sin 1 3 + 3 8 sinh 1 ( 1 3 ) \begin{aligned} A(1) & = \; \left[ \tfrac23\big(x + \sqrt{x-1}\big)^{\frac32} - \tfrac12\big(\sqrt{x-1} + \tfrac12\big)\sqrt{x + \sqrt{x-1}}\right]_1^2 - \tfrac38\left[\sinh^{-1}\big(\tfrac{2u}{\sqrt{3}}\big)\right]_{\frac12}^{\frac32} \\ & = \; \tfrac54\sqrt{3} - \tfrac{5}{12} - \tfrac38\sin^{-1}\sqrt{3} + \tfrac38\sinh^{-1} \big(\tfrac{1}{\sqrt{3}}\big) \end{aligned} and so 10000 A ( 1 ) = 14605 \lfloor 10000 A(1)\rfloor = \boxed{14605} .

守恒 吴
Dec 15, 2020

Let's consi

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...