Integration Grandmaster - P2

Calculus Level 4

Given that F ( x ) = x 2 2 sinh 2 x ( x 2 1 ) sinh ( 2 x ) + 2 x d x F(x) = \displaystyle \int \dfrac{x^2-2\sinh^2 x}{(x^2-1)\sinh(2x) + 2x} dx , F ( ln 2 ) = 1 2 ln ( 5 4 + 3 ln 2 4 ) 1 2 ln ( 3 4 + 5 ln 2 4 ) F(\ln 2) = \dfrac{1}{2}\ln(\dfrac{5}{4}+\dfrac{3 \ln 2}{4})-\dfrac{1}{2}\ln(-\dfrac{3}{4}+\dfrac{5 \ln 2}{4}) , find F ( 2 ) F(2) .

Submit 10000 F ( 2 ) \lfloor 10000 F(2) \rfloor .


The answer is 5194.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Dec 10, 2020

The substitution y = x sinh x + cosh x x cosh x sinh x y \; =\; \frac{x\sinh x + \cosh x}{x\cosh x - \sinh x} gives d y d x = x cosh x + 2 sinh x x cosh x sinh x x sinh x ( x sinh x + cosh x ) ( x cosh x sinh x ) 2 = x 2 2 sinh 2 x ( x cosh x sinh x ) 2 \frac{dy}{dx} \; = \; \frac{x\cosh x + 2\sinh x}{x\cosh x - \sinh x} - \frac{x\sinh x(x\sinh x + \cosh x)}{(x \cosh x - \sinh x)^2} \; =\; \frac{x^2 - 2\sinh^2x}{(x\cosh x - \sinh x)^2} and hence 1 y d y d x = x 2 2 sinh 2 x ( x cosh x sinh x ) ( x sinh x + cosh x ) = x 2 2 sinh 2 x ( x 2 1 ) sinh x cosh x + x \frac{1}{y}\,\frac{dy}{dx} \; =\; \frac{x^2 - 2\sinh^2x}{(x\cosh x - \sinh x)(x\sinh x + \cosh x)} \; = \; \frac{x^2 - 2\sinh^2x}{(x^2-1)\sinh x \cosh x + x} so that F ( x ) = 1 2 y d y = 1 2 ln y + c F(x) \; = \; \int \frac{1}{2y}\,dy \; = \; \tfrac12\ln y + c With the given value of F ( ln 2 ) F(\ln 2) , we deduce that c = 0 c=0 , and hence F ( x ) = 1 2 ln ( x sinh x + cosh x x cosh x sinh x ) F(x) \; =\; \tfrac12\ln\left(\frac{x\sinh x + \cosh x}{x\cosh x - \sinh x}\right) which implies that F ( 2 ) = 1 2 ln ( 3 e 4 1 e 4 + 3 ) F(2) \; =\; \tfrac12\ln\left(\frac{3e^4 - 1}{e^4 + 3}\right) and hence 10000 F ( 2 ) = 5194 \lfloor 10000 F(2)\rfloor = \boxed{5194} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...