Integration Grandmaster - P3

Calculus Level 5

Let

A = 0 e 1 ( x sin ( ln ( x + 1 ) ) 1 + 1 + x ) 2 d x A = \int_{0}^{e-1} \left(\dfrac{x \sin (\ln (x+1))}{1+\sqrt{1+x}}\right)^2 dx

Submit 10000 A \lfloor 10000A \rfloor .

Note: Sorry about that, the upper bound is e 1 e-1 , not 1 1 .


The answer is 1400.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Dec 10, 2020

Using the substitution y = ln ( x + 1 ) y = \ln(x+1) , then integral becomes A = 0 1 ( e y 1 ) 2 sin 2 y ( e 1 2 y + 1 ) 2 e y d y = 0 1 ( e 1 2 y 1 ) 2 e y sin 2 y d y = J ( 2 ) 2 J ( 3 2 ) + J ( 1 ) A \; = \; \int_0^1 \frac{(e^y - 1)^2 \sin^2y}{(e^{\frac12y}+1)^2}e^y\,dy \; = \; \int_0^1 \big(e^{\frac12y}-1\big)^2e^y\,\sin^2y\,dy \; = \; J(2) - 2J(\tfrac32) + J(1) where J ( a ) J(a) can be evaluated by standard integration tricks (double angles, integration by parts): J ( a ) = 0 1 e a y sin 2 y d y = 1 a ( 4 + a 2 ) [ e a ( 2 + a 2 sin 2 1 a sin 2 ) 1 ] J(a) \; = \; \int_0^1 e^{ay}\sin^2y\,dy \; = \; \frac{1}{a(4+a^2)}\Big[e^a(2 + a^2\sin^21 - a\sin 2) - 1\Big] and hence A = 1 600 [ 16 e 3 2 ( 9 cos 2 + 12 sin 2 25 ) + 60 e ( cos 2 + 2 sin 2 5 ) 75 e 2 ( cos 2 + sin 2 2 ) 59 ] A = \frac{1}{600}\Big[16e^{\frac32}(9\cos 2 + 12\sin 2 - 25) + 60e(\cos 2 + 2\sin 2 - 5) - 75e^2(\cos 2 + \sin 2 - 2) - 59\Big] which makes 10000 A = 1400 \lfloor 10000 A \rfloor = \boxed{1400} .

I had done this. But it was tedious .Great solution!

Dwaipayan Shikari - 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...