Integration Grandmaster - P7

Calculus Level 4

Let

A = 0 1 ( x 3 2 ) x 3 x 2 + 1 ( x 3 + 1 ) 2 d x A = \int_{0}^{1} \frac{(x^3-2)\sqrt{x^3-x^2+1}}{(x^3+1)^2} dx

Submit 10000 A \lfloor 10000A \rfloor .


The answer is -12854.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Dec 13, 2020

With the substitution sin φ = x x 3 + 1 0 x 1 \sin \varphi \; = \; \frac{x}{\sqrt{x^3 + 1}} \hspace{2cm} 0 \le x \le 1 we see that cos φ d φ d x = 1 x 3 + 1 3 x 3 2 ( x 3 + 1 ) x 3 + 1 = 2 x 3 2 ( x 3 + 1 ) x 3 + 1 cos φ = x 3 x 2 + 1 x 3 + 1 \begin{aligned} \cos\varphi\frac{d\varphi}{dx} & = \; \frac{1}{\sqrt{x^3+1}} - \frac{3x^3}{2(x^3+1)\sqrt{x^3+1}} \; = \; \frac{2 - x^3}{2(x^3+1)\sqrt{x^3+1}} \\ \cos\varphi & = \; \frac{\sqrt{x^3 - x^2 +1}}{\sqrt{x^3+1}} \end{aligned} so that A = 0 1 ( x 3 2 ) x 3 x 2 + 1 ( x 3 + 1 ) 2 d x = 2 0 1 4 π cos 2 φ d φ = [ φ + 1 2 sin 2 φ ] 0 1 4 π = 1 4 π 1 2 A \; = \; \int_0^1 \frac{(x^3-2)\sqrt{x^3 - x^2 + 1}}{(x^3+1)^2}\,dx \; = \; -2\int_0^{\frac14\pi}\cos^2\varphi\,d\varphi \; = \; -\Big[\varphi + \tfrac12\sin2\varphi\Big]_0^{\frac14\pi} \; = \; -\tfrac14\pi - \tfrac12 and hence 10000 A = 12854 \lfloor 10000 A \rfloor = \boxed{-12854} .

precisely what I used - a lot neater than I expected initially!

ari krishna - 3 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...