Integration Grandmaster - P8

Calculus Level 4

Let

A = 0 π 2 sin 3 x cos 3 x + sin 3 x d x A = \int_{0}^{\frac{\pi}{2}} \dfrac{\sin^3 x}{\cos^3 x + \sin^3 x} dx

Submit 10000 A \lfloor 10000A \rfloor .


The answer is 7853.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Dwaipayan Shikari
Dec 10, 2020

Using μ e ¨ f ( x ) d x = μ e ¨ f ( μ + e ¨ x ) d x \color{#3D99F6}\int_μ^ë f(x) dx = \int_μ^ë f(μ+ë-x) dx I = 0 π 2 cos 3 x sin 3 x + cos 3 x = 0 π / 2 sin 3 x cos 3 x + sin 3 x d x I= \int_0^{\frac{π}{2}} \frac{\cos^3 x }{\sin^3 x + \cos^3 x }= \int_0^{π/2} \frac{\sin^3 x }{\cos^3 x + \sin^3 x}dx So , 2 I = 0 π 2 cos 3 x + sin 3 x sin 3 x + cos 3 x d x 2I = \int_0^{\frac{π}{2}} \frac{\cos^3 x +\sin^3 x}{\sin^3 x +\cos^3 x}dx 2 I = 0 π / 2 1 d x 2I = \int_0^{π/2} 1 dx I = π 4 I= \frac{π}{4} Answer is 10000 × π 4 = 7853 ⌊10000×\frac{π}{4}⌋ = \color{#20A900}\boxed{7853}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...