Integration Grandmaster - P9

Calculus Level 4

Let

A = 0 1 sin x cos x sin 4 x + cos 4 x d x A = \int_{0}^{1} \dfrac{\sin x \cos x}{\sin^4 x + \cos^4 x} dx

Submit 10000 A \lfloor 10000A \rfloor .


The answer is 5898.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Karan Chatrath
Dec 11, 2020

A = 0 1 sin x cos x sin 4 x + cos 4 x d x A = \int_{0}^{1} \frac{\sin{x} \cos{x}}{\sin^4{x} + \cos^4{x}} \ dx A = 0 1 sin x cos x ( sin 2 x + cos 2 x ) 2 2 sin 2 x cos 2 x d x A= \int_{0}^{1} \frac{\sin{x} \cos{x}}{(\sin^2{x} + \cos^2{x})^2-2\sin^2{x}\cos^2{x}} \ dx A = 0 1 2 sin x cos x 2 ( sin 2 x + cos 2 x ) 2 4 sin 2 x cos 2 x d x A= \int_{0}^{1} \frac{2\sin{x} \cos{x}}{2(\sin^2{x} + \cos^2{x})^2-4\sin^2{x}\cos^2{x}} \ dx A = 0 1 sin ( 2 x ) 2 sin 2 ( 2 x ) d x A= \int_{0}^{1} \frac{\sin(2x)}{2-\sin^2(2x)} \ dx A = 0 1 sin ( 2 x ) 1 + cos 2 ( 2 x ) d x A= \int_{0}^{1} \frac{\sin(2x)}{1+\cos^2(2x)} \ dx

cos ( 2 x ) = z \cos(2x) = z 2 sin ( 2 x ) d x = d z \implies -2\sin(2x) \ dx = dz A = 1 2 cos 2 1 d z 1 + z 2 A= \frac{1}{2} \int_{\cos{2}}^{1}\frac{dz}{1 + z^2} A = 1 2 ( π 4 arctan ( cos 2 ) ) A= \frac{1}{2} \left(\frac{\pi}{4} - \arctan(\cos{2})\right) 10000 A = 5898 \boxed{\lfloor 10000A \rfloor = 5898}

Tom Engelsman
Dec 13, 2020

Let's evaluate this integral by the following method: First take

u = sin ( x ) , d u = cos ( x ) d x , u [ 0 , π / 2 ] 0 π / 2 u u 4 + ( 1 u 2 ) 2 d u = 0 π / 2 u 2 u 4 2 u 2 + 1 d u = 1 2 0 π / 2 u ( u 2 1 / 2 ) 2 + ( 1 / 2 ) 2 d u u = \sin(x), du = \cos(x) dx, u \in [0, \pi/2] \Rightarrow \int_{0}^{\pi/2} \frac{u}{u^4 + (1-u^2)^2} du =\int_{0}^{\pi/2} \frac{u}{2u^4 -2 u^2+1} du = \frac{1}{2} \cdot \int_{0}^{\pi/2} \frac{u}{(u^2 - 1/2)^2 + (1/2)^2} du (i)

Now take:

v = u 2 1 / 2 , d v = 2 u d u , v [ 1 / 2 , ( π 2 2 ) / 4 ] 1 4 1 / 2 ( π 2 2 ) / 4 1 v 2 + ( 1 / 2 ) 2 d v = 1 2 arctan ( 2 v ) 1 / 2 ( π 2 2 ) / 4 0.58983 v = u^2 - 1/2, dv = 2u du, v \in [-1/2, (\pi^2-2)/4] \Rightarrow \frac{1}{4} \cdot \int_{-1/2}^{(\pi^2-2)/4} \frac{1}{v^2 + (1/2)^2} dv = \frac{1}{2}\arctan(2v)|_{-1/2}^{(\pi^2-2)/4} \approx 0.58983 (ii)

which gives us 10000 0.58983 = 5898 . \lfloor 10000 \cdot 0.58983 \rfloor = \boxed{5898}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...