If ∫ 0 1 x 2 0 1 5 e − x d x = 2 0 1 5 ! − k r = 0 ∑ 2 0 1 5 ( 2 0 1 5 C r × ( r ! ) ) , find ⌊ 1 0 0 k ⌋ .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I didn't want to confuse people, hence I didn't use the upper and lower gamma function(just some more terms).
We can continuously indefinitely integrate the l.h.s of the question. writing every step of this by parts one below one we can cancel the lhs. Then simplifying and putting limit we get a series. The series is nothing but the r.h.s. I am uploading a pic.sorry for handwriting
.Much more easy without gamma function and proving
I ( n ) = − e 1 + n I ( n − 1 ) w h e r e I ( n ) = ∫ 0 1 x n e − x d x
Problem Loading...
Note Loading...
Set Loading...
Nice little problem!
∫ 0 1 x 2 0 1 5 e − x d x = 2 0 1 5 ! − k r = 0 ∑ 2 0 1 5 ( r 2 0 1 5 ) r !
∫ 0 1 x 2 0 1 5 e − x d x + k r = 0 ∑ 2 0 1 5 ( r 2 0 1 5 ) Γ ( r + 1 ) = 2 0 1 5 !
∫ 0 1 x 2 0 1 5 e − x d x + k r = 0 ∑ 2 0 1 5 ( r 2 0 1 5 ) ∫ 0 ∞ x r e − x d x = 2 0 1 5 !
∫ 0 1 x 2 0 1 5 e − x d x + k ∫ 0 ∞ r = 0 ∑ 2 0 1 5 ( r 2 0 1 5 ) x r e − x d x = 2 0 1 5 !
∫ 0 1 x 2 0 1 5 e − x d x + k ∫ 0 ∞ ( 1 + x ) 2 0 1 5 e − x d x = 2 0 1 5 !
∫ 0 1 x 2 0 1 5 e − x d x + k ∫ 1 ∞ x 2 0 1 5 e − ( x − 1 ) d x = 2 0 1 5 !
∫ 0 1 x 2 0 1 5 e − x d x + k × e ∫ 1 ∞ x 2 0 1 5 e − x d x = 2 0 1 5 !
We know however that 2 0 1 5 ! = ∫ 0 ∞ x 2 0 1 5 e − x d x = ∫ 0 1 x 2 0 1 5 e − x d x + ∫ 1 ∞ x 2 0 1 5 e − x d x
Substituting it, we get k × e = 1 ⇒ k = e 1