Integration is (fundamentally) summation

Calculus Level 5

If 0 1 x 2015 e x d x = 2015 ! k r = 0 2015 ( 2015 C r × ( r ! ) ) \displaystyle \large \int _{ 0 }^{ 1 }{ { x }^{ 2015 }{ e }^{ -x }dx } =2015!-k\sum _{ r=0 }^{ 2015 }{ \left( ^{ 2015 }{ { C }_{ r } }\times \left( r! \right) \right) } , find 100 k \left\lfloor 100k \right\rfloor .


The answer is 36.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Kartik Sharma
Nov 20, 2015

Nice little problem!

0 1 x 2015 e x d x = 2015 ! k r = 0 2015 ( 2015 r ) r ! \displaystyle \int _0^1 {x^{2015} e^{-x} \ dx} =2015! - k \sum_{r=0}^{2015}{\dbinom{2015}{r} r!}

0 1 x 2015 e x d x + k r = 0 2015 ( 2015 r ) Γ ( r + 1 ) = 2015 ! \displaystyle \int _0^1 {x^{2015} e^{-x} \ dx} + k \sum_{r=0}^{2015}{\dbinom{2015}{r} \Gamma(r+1)} = 2015!

0 1 x 2015 e x d x + k r = 0 2015 ( 2015 r ) 0 x r e x d x = 2015 ! \displaystyle \int _0^1 {x^{2015} e^{-x} \ dx} + k \sum_{r=0}^{2015}{\dbinom{2015}{r} \int_0^{\infty}{x^r e^{-x} \, dx}} = 2015!

0 1 x 2015 e x d x + k 0 r = 0 2015 ( 2015 r ) x r e x d x = 2015 ! \displaystyle \int _0^1 {x^{2015} e^{-x} \ dx} + k \int_0^{\infty}{\sum_{r=0}^{2015}{\dbinom{2015}{r} x^r} e^{-x} \, dx} = 2015!

0 1 x 2015 e x d x + k 0 ( 1 + x ) 2015 e x d x = 2015 ! \displaystyle \int _0^1 {x^{2015} e^{-x} \ dx} + k \int_0^{\infty}{(1+x)^{2015} e^{-x} \, dx} = 2015!

0 1 x 2015 e x d x + k 1 x 2015 e ( x 1 ) d x = 2015 ! \displaystyle \int _0^1 {x^{2015} e^{-x} \ dx} + k \int_1^{\infty}{x^{2015} e^{-(x-1)} \, dx} = 2015!

0 1 x 2015 e x d x + k × e 1 x 2015 e x d x = 2015 ! \displaystyle \int _0^1 {x^{2015} e^{-x} \ dx} + k \times e \int_1^{\infty}{x^{2015} e^{-x} \, dx} = 2015!

We know however that 2015 ! = 0 x 2015 e x d x = 0 1 x 2015 e x d x + 1 x 2015 e x d x \displaystyle 2015! = \int_0^{\infty}{x^{2015} e^{-x} \, dx} = \int_0^1 {x^{2015} e^{-x} \, dx} + \int_1^{\infty}{x^{2015} e^{-x} \, dx}

Substituting it, we get k × e = 1 k = 1 e \displaystyle k \times e = 1 \Rightarrow \large k = \frac{1}{e}

I didn't want to confuse people, hence I didn't use the upper and lower gamma function(just some more terms).

Kartik Sharma - 5 years, 6 months ago

Log in to reply

Without gamma function is so easy...

Akul Agrawal - 5 years, 2 months ago

We can continuously indefinitely integrate the l.h.s of the question. writing every step of this by parts one below one we can cancel the lhs. Then simplifying and putting limit we get a series. The series is nothing but the r.h.s. I am uploading a pic.sorry for handwriting .

Akul Agrawal
Apr 8, 2016

Much more easy without gamma function and proving

I ( n ) = 1 e + n I ( n 1 ) w h e r e I ( n ) = 0 1 x n e x d x I(n)=-\frac { 1 }{ e } +nI(n-1)\\ where\quad I(n)=\int _{ 0 }^{ 1 }{ { x }^{ n } } { e }^{ -x }dx

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...