Integration Mania Continued

Calculus Level 5

1 3 1 3 x 4 1 x 4 arccos ( 2 x 1 + x 2 ) d x \large \int_{-\frac1{\sqrt3}}^{\frac1{\sqrt3}} \dfrac{x^4}{1-x^4} \text{arccos} \left( \dfrac{2x}{1+x^2} \right) \, dx

The integral above can be expressed as

π A [ B C π D E F ln G + H G H ] , - \pi ^ A \left [ \dfrac B{\sqrt C} - \dfrac{\pi }{D} - \dfrac EF \ln \left |\dfrac{\sqrt G+ H}{\sqrt G - H} \right | \right ] ,

where A , B , C , D , E , F , G , H A,B,C,D,E,F,G,H are all positive integers with C , G C,G square-free and E , F E, F coprime.

Submit your answer as the sum A + B + C + D + E + F + G + H A + B + C + D + E + F + G + H .


The answer is 26.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Vin Diesel
Jun 27, 2018

@Vincent Moroney 's solution. First we utilize the following integral property a a f ( x ) d x = 0 a f ( x ) d x + 0 a f ( x ) d x \int_{-a}^a f(x)\,dx = \int_0^{a} f(x)\,dx + \int_0^{a} f(-x)\,dx and the property that arccos ( x ) = π arccos ( x ) \arccos(-x) = \pi - \arccos(x) to give 0 1 3 x 4 1 x 4 [ arccos ( 2 x 1 + x 2 ) + arccos ( 2 x 1 + x 2 ) ] d x \int_0^{\frac{1}{\sqrt{3}}} \frac{x^4}{1-x^4}\Big[\arccos\Big(\frac{2x}{1+x^2} \Big) + \arccos\Big(\frac{-2x}{1+x^2} \Big) \Big] \,dx = π 0 1 3 x 4 1 x 4 d x = π 0 1 3 x 4 x 4 1 d x . = \pi \int_0^{\frac{1}{\sqrt{3}}}\frac{x^4}{1-x^4} \,dx = - \pi \int_0^{\frac{1}{\sqrt{3}}} \frac{x^4}{x^4-1} \,dx. The remaining integral is easily computed with partial fraction decomposition: x 4 x 4 1 = 1 + 1 x 4 1 1 x 4 1 = 1 4 1 x 1 1 4 1 x + 1 1 2 1 x 2 + 1 \frac{x^4}{x^4-1} = 1 + \frac{1}{x^4-1} \Rightarrow \frac{1}{x^4-1} = \frac{1}{4}\frac{1}{x-1} -\frac{1}{4}\frac{1}{x+1} -\frac{1}{2}\frac{1}{x^2+1} so all that remains is the computation of the following integrals π 0 1 3 ( 1 + 1 4 1 x 1 1 4 1 x + 1 1 2 1 x 2 + 1 ) d x . -\pi \int_0^{\frac{1}{\sqrt{3}}} \Big(1 + \frac{1}{4}\frac{1}{x-1} -\frac{1}{4}\frac{1}{x+1} -\frac{1}{2}\frac{1}{x^2+1}\Big) \,dx . Since these are all trivial integrals, computation will be skipped. The desired answer is: π ( 1 3 π 12 1 4 ln 3 + 1 3 1 ) -\pi\Big(\frac{1}{\sqrt{3}}- \frac{\pi}{12} -\frac{1}{4} \ln \Big| \frac{\sqrt{3} +1}{\sqrt{3}-1} \Big|\Big) so A + B + C + D + E + F + G + H = 26 A+B+C+D+E+F+G+H = \boxed{26}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...