∫ − 3 1 3 1 1 − x 4 x 4 arccos ( 1 + x 2 2 x ) d x
The integral above can be expressed as
− π A [ C B − D π − F E ln ∣ ∣ ∣ ∣ ∣ G − H G + H ∣ ∣ ∣ ∣ ∣ ] ,
where A , B , C , D , E , F , G , H are all positive integers with C , G square-free and E , F coprime.
Submit your answer as the sum A + B + C + D + E + F + G + H .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
@Vincent Moroney 's solution. First we utilize the following integral property ∫ − a a f ( x ) d x = ∫ 0 a f ( x ) d x + ∫ 0 a f ( − x ) d x and the property that arccos ( − x ) = π − arccos ( x ) to give ∫ 0 3 1 1 − x 4 x 4 [ arccos ( 1 + x 2 2 x ) + arccos ( 1 + x 2 − 2 x ) ] d x = π ∫ 0 3 1 1 − x 4 x 4 d x = − π ∫ 0 3 1 x 4 − 1 x 4 d x . The remaining integral is easily computed with partial fraction decomposition: x 4 − 1 x 4 = 1 + x 4 − 1 1 ⇒ x 4 − 1 1 = 4 1 x − 1 1 − 4 1 x + 1 1 − 2 1 x 2 + 1 1 so all that remains is the computation of the following integrals − π ∫ 0 3 1 ( 1 + 4 1 x − 1 1 − 4 1 x + 1 1 − 2 1 x 2 + 1 1 ) d x . Since these are all trivial integrals, computation will be skipped. The desired answer is: − π ( 3 1 − 1 2 π − 4 1 ln ∣ ∣ ∣ 3 − 1 3 + 1 ∣ ∣ ∣ ) so A + B + C + D + E + F + G + H = 2 6