Integration Mania Continued v2

Calculus Level 5

2 3 2 x 5 + x 4 2 x 3 + 2 x 2 + 1 x 6 + x 4 x 2 1 d x \large \int_2^3 \dfrac{2x^5 + x^4 - 2x^3 + 2x^2 + 1}{x^6 + x^4-x^2 - 1} \, dx

If the integral above can be expressed in the form of

A B ln 6 D E , \dfrac AB \ln 6 - \dfrac DE \; ,

where A , B , D A,B,D and E E are positive integers with gcd ( A , B ) = gcd ( D , E ) = 1 \gcd(A,B) = \gcd(D,E) = 1 , find 6 × A × B × D × E 6\times A \times B \times D \times E .


The answer is 120.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

First Last
Apr 2, 2016

Denominator can be factored to ( x 2 + 1 ) 2 ( x 2 1 ) (x^2+1)^2(x^2-1) . Breaking up the fraction to 2 3 2 x 5 2 x 3 ( x 2 + 1 ) 2 ( x 2 1 ) d x + x 4 + 2 x 2 + 1 ( x 2 + 1 ) 2 ( x 2 1 ) d x \int_{2}^{3}\dfrac{2x^5-2x^3}{(x^2+1)^2(x^2-1)}dx + \dfrac{x^4+2x^2+1}{(x^2+1)^2(x^2-1)}dx

Canceling leaves 2 3 2 x 3 ( x 2 + 1 ) 2 d x + 1 ( x 2 1 ) d x = \int_{2}^{3}\dfrac{2x^3}{(x^2+1)^2}dx + \dfrac{1}{(x^2-1)}dx =

[ x 2 x 2 + 1 + ln ( x 2 + 1 ) ] 2 3 + [ ln ( x 1 x + 1 ) 2 ] 2 3 = \Bigg[\dfrac{-x^2}{x^2+1} + \ln(x^2+1)\Bigg]_{2}^{3} + \Bigg[\dfrac{\ln(\frac{x-1}{x+1})}{2}\Bigg]_{2}^{3} =

ln ( 6 ) 2 1 10 \boxed{\frac{\ln(6)}{2} - \frac{1}{10}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...