Integration Month

Calculus Level 4

tan 1 ( x ) x 4 d x \large \int \frac{\tan^{-1}(x)}{x^4} \, dx

If the indefinite integral above equals to tan 1 ( x ) a x a + b c ln ( x d + b x d ) b c x d + C - \frac{\tan^{-1}(x)}{a\cdot x^a} + \frac bc \ln \left( \frac{x^d+b}{x^d} \right) - \frac b{c\cdot x^d} + C

for positive integer constants a , b , c a,b,c and d d with b , c b,c coprime and arbitrary constant C C , find the value of a + b + c + d a+b+c+d .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The question is wrong!!! I'm lucky 12 worked! :-D Following is the solution of the given integral:

arctan ( x ) x 4 d x \int \frac { \arctan { (x } ) }{ { x }^{ 4 } } dx\\

Using integration by parts:

arctan ( x ) x 4 d x 1 1 + x 2 ( x 4 d x ) d x arctan ( x ) 3 x 3 + 1 3 x 3 1 + x 2 d x arctan ( x ) 3 x 3 + 1 3 x 2 x 3 1 + x 2 d x \arctan { (x) } \int { { x }^{ -4 } } dx\quad -\quad \int { \frac { 1 }{ 1+{ x }^{ 2 } } (\int { { x }^{ -4 }dx)\quad dx } } \\ \Rightarrow \quad \frac { -\arctan { (x) } }{ 3{ x }^{ 3 } } +\frac { 1 }{ 3 } \int { \frac { { x }^{ -3 } }{ 1+{ x }^{ 2 } } } dx\\ \Rightarrow \quad \frac { -\arctan { (x) } }{ 3{ x }^{ 3 } } +\frac { 1 }{ 3 } \int { \frac { { \quad }{ x }^{ -2 }{ x }^{ -3 } }{ 1+{ x }^{ -2 } } } dx

Now, substituting x 2 = t 2 x 3 d x = d t { x }^{ -2 }=t\\ \Rightarrow \quad -2{ x }^{ -3 }dx\quad =\quad dt

arctan ( x ) 3 x 3 1 6 t 1 t d t arctan ( x ) 3 x 3 1 6 1 1 t d t arctan ( x ) 3 x 3 1 6 t + 1 6 ln t + K arctan ( x ) 3 x 3 1 6 ( x 2 + 1 ) + 1 6 ln x 2 + 1 x 2 + K arctan ( x ) 3 x 3 + 1 6 ln x 2 + 1 x 2 1 6 x 2 + C \Rightarrow \quad \frac { -\arctan { (x) } }{ 3{ x }^{ 3 } } -\frac { 1 }{ 6 } \int { \frac { t-1 }{ t } dt } \\ \Rightarrow \quad \frac { -\arctan { (x) } }{ 3{ x }^{ 3 } } -\frac { 1 }{ 6 } \int { 1-\frac { 1 }{ t } dt } \\ \Rightarrow \quad \frac { -\arctan { (x) } }{ 3{ x }^{ 3 } } -\frac { 1 }{ 6 } t+\frac { 1 }{ 6 } \ln { t } +K\\ \Rightarrow \quad \frac { -\arctan { (x) } }{ 3{ x }^{ 3 } } -\frac { 1 }{ 6 } ({ x }^{ -2 }+1)+\frac { 1 }{ 6 } \ln { \frac { { x }^{ 2 }+1 }{ { x }^{ 2 } } } +K\\ \Rightarrow \quad \frac { -\arctan { (x) } }{ 3{ x }^{ 3 } } +\frac { 1 }{ 6 } \ln { \frac { { x }^{ 2 }+1 }{ { x }^{ 2 } } } -\frac { 1 }{ 6{ x }^{ 2 } } +C

Now, by comparing, we can see, a = 3 , b = 1 , d = 2 a=3, b=1, d=2 but c c can be both 6 6 and 6 -6 !

Hey can u integrate (arctan(x)/x)

Shiva Bajpai - 4 years, 9 months ago
Shrey Suri
Oct 14, 2015

yeah i too got a=3 b=1 d=2 and c=6 and -6, which is not possible...... So this ques is wrongly stated!!!!!!!!!!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...