∫ x 4 tan − 1 ( x ) d x
If the indefinite integral above equals to − a ⋅ x a tan − 1 ( x ) + c b ln ( x d x d + b ) − c ⋅ x d b + C
for positive integer constants a , b , c and d with b , c coprime and arbitrary constant C , find the value of a + b + c + d .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Hey can u integrate (arctan(x)/x)
yeah i too got a=3 b=1 d=2 and c=6 and -6, which is not possible...... So this ques is wrongly stated!!!!!!!!!!
Problem Loading...
Note Loading...
Set Loading...
The question is wrong!!! I'm lucky 12 worked! :-D Following is the solution of the given integral:
∫ x 4 arctan ( x ) d x
Using integration by parts:
arctan ( x ) ∫ x − 4 d x − ∫ 1 + x 2 1 ( ∫ x − 4 d x ) d x ⇒ 3 x 3 − arctan ( x ) + 3 1 ∫ 1 + x 2 x − 3 d x ⇒ 3 x 3 − arctan ( x ) + 3 1 ∫ 1 + x − 2 x − 2 x − 3 d x
Now, substituting x − 2 = t ⇒ − 2 x − 3 d x = d t
⇒ 3 x 3 − arctan ( x ) − 6 1 ∫ t t − 1 d t ⇒ 3 x 3 − arctan ( x ) − 6 1 ∫ 1 − t 1 d t ⇒ 3 x 3 − arctan ( x ) − 6 1 t + 6 1 ln t + K ⇒ 3 x 3 − arctan ( x ) − 6 1 ( x − 2 + 1 ) + 6 1 ln x 2 x 2 + 1 + K ⇒ 3 x 3 − arctan ( x ) + 6 1 ln x 2 x 2 + 1 − 6 x 2 1 + C
Now, by comparing, we can see, a = 3 , b = 1 , d = 2 but c can be both 6 and − 6 !