Integration of Multiplied Logarithms

Calculus Level 4

Evaluate: 0 1 ln ( x ) ln ( 1 x ) d x \int_0^1\ln(x)\ln(1-x)\ dx


The answer is 0.3550659332.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Joseph Newton
Aug 27, 2018

0 1 ln ( x ) ln ( 1 x ) d x = 0 1 ln ( x ) n = 1 x n n d x using series expansion for ln ( 1 x ) = 0 ( e t ) ( t ) n = 1 e t n n d t letting x = e t = 0 n = 1 t e t ( n + 1 ) n d t = [ n = 1 t e t ( n + 1 ) n ( n + 1 ) ] 0 + 0 n = 1 e t ( n + 1 ) n ( n + 1 ) d t using integration by parts = [ n = 1 t n ( n + 1 ) e t ( n + 1 ) ] 0 + [ n = 1 e t ( n + 1 ) n ( n + 1 ) 2 ] 0 = 0 + 0 0 + n = 1 1 n ( n + 1 ) 2 note that e t ( n + 1 ) > > t , so lim t t e t ( n + 1 ) = 0 = n = 1 1 n ( n + 1 ) n = 1 1 ( n + 1 ) 2 = n = 1 ( 1 n 1 n + 1 ) n = 2 1 n 2 = 1 ( π 2 6 1 ) using telescoping series and the result of the Basel problem = 2 π 2 6 0.355 \begin{aligned}\int_0^1\ln(x)\ln(1-x)\ dx&=-\int_0^1\ln(x)\sum_{n=1}^\infty\frac{x^n}{n}\ dx&&\text{using series expansion for }\ln(1-x)\\ &=-\int_\infty^0(-e^{-t})(-t)\sum_{n=1}^\infty\frac{e^{-tn}}{n}\ dt&&\text{letting }x=e^{-t}\\ &=\int_0^\infty\sum_{n=1}^\infty\frac{te^{-t(n+1)}}{n}\ dt\\ &=\left[-\sum_{n=1}^\infty\frac{te^{-t(n+1)}}{n(n+1)}\right]_0^\infty+\int_0^\infty\sum_{n=1}^\infty\frac{e^{-t(n+1)}}{n(n+1)}\ dt&&\text{using integration by parts}\\ &=\left[-\sum_{n=1}^\infty\frac{t}{n(n+1)e^{t(n+1)}}\right]_0^\infty+\left[-\sum_{n=1}^\infty\frac{e^{-t(n+1)}}{n(n+1)^2}\right]_0^\infty\\ &=-0+0-0+\sum_{n=1}^\infty\frac{1}{n(n+1)^2}&&\text{note that }e^{t(n+1)}>>t,\text{ so }\lim_{t \to \infty}\frac{t}{e^{t(n+1)}}=0\\ &=\sum_{n=1}^\infty\frac{1}{n(n+1)}-\sum_{n=1}^\infty\frac{1}{(n+1)^2}\\ &=\sum_{n=1}^\infty\left(\frac{1}{n}-\frac{1}{n+1}\right)-\sum_{n=2}^\infty\frac{1}{n^2}\\ &=1-\left(\frac{\pi^2}{6}-1\right)&&\text{using telescoping series and the result of the Basel problem}\\ &=\boxed{2-\frac{\pi^2}{6}\approx0.355}\end{aligned}

@Joseph Newton AMAZING!!!! I solved it by differentiating the Beta Function........ similar to Sir Mark's solution....!!

Aaghaz Mahajan - 2 years, 9 months ago

Did the exact same

Aditya Kumar - 2 years, 8 months ago
Chew-Seong Cheong
Aug 27, 2018

I = 0 1 ln x ln ( 1 x ) d x Using integration by parts = ( x ln x x ) ln ( 1 x ) 0 1 + 0 1 x ln x x 1 x d x = lim x 0 ( ln x ) + 0 1 x ln x 1 x d x 0 1 x 1 x d x By a b f ( x ) d x = a b f ( a + b x ) d x = lim x 0 ln x 0 1 ( ln x ln x 1 x ) d x 0 1 1 x x d x = lim x 0 ln x ( x ln x x ) 0 1 + 0 1 ln x 1 x d x 0 1 ( 1 x 1 ) d x By a b f ( x ) d x = a b f ( a + b x ) d x = lim x 0 ln x + 1 + 0 1 ln ( 1 x ) x d x ( ln x x ) 0 1 Dilogarithm function Li 2 ( z ) = 0 z ln ( 1 t ) t d t = lim x 0 ln x + 1 Li 2 ( 1 ) + 1 + lim x 0 ln x also Li s ( z ) = k = 1 z k k s Li 2 ( 1 ) = k = 1 1 k 2 = ζ ( 2 ) , = 2 ζ ( 2 ) = 2 π 2 6 0.355 where ζ ( ) is Riemann zeta function. \begin{aligned} I & = \int_0^1 \ln x \ln(1-x) \ dx & \small \color{#3D99F6} \text{Using integration by parts} \\ & = (x\ln x - x)\ln (1-x) \bigg|_0^1 + \int_0^1 \frac {x\ln x - x}{1-x} dx \\ & = \lim_{x \to 0}(-\ln x) + \int_0^1 \frac {x\ln x}{1-x} dx - \color{#3D99F6} \int_0^1 \frac x{1-x} dx & \small \color{#3D99F6} \text{By }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = - \lim_{x \to 0}\ln x - \int_0^1\left(\ln x - \frac {\ln x}{1-x}\right) dx - \color{#3D99F6} \int_0^1 \frac {1-x}x dx \\ & = - \lim_{x \to 0}\ln x - (x\ln x - x) \bigg|_0^1 +{\color{#3D99F6}\int_0^1 \frac {\ln x}{1-x} dx} - \int_0^1\left(\frac 1x-1\right) dx & \small \color{#3D99F6} \text{By }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = - \lim_{x \to 0}\ln x +1 +{\color{#3D99F6}\int_0^1 \frac {\ln (1-x)}x dx} - (\ln x -x)\bigg|_0^1 & \small \color{#3D99F6} \text{Dilogarithm function Li}_2 (z) = - \int_0^z \frac {\ln (1-t)} t dt \\ & = - \lim_{x \to 0}\ln x +1 {\color{#3D99F6}-\text{Li}_2 (1)} + 1 + \lim_{x \to 0}\ln x & \small \color{#3D99F6} \text{also Li}_s (z) = \sum_{k=1}^\infty \frac {z^k}{k^s} \implies \text{Li}_2(1) = \sum_{k=1}^\infty \frac 1{k^2} = \zeta (2), \\ & = 2 {\color{#3D99F6}-\zeta (2)} = 2 {\color{#3D99F6}-\frac {\pi^2}6} \approx \boxed{0.355} & \small \color{#3D99F6} \text{where }\zeta (\cdot) \text{ is Riemann zeta function.} \end{aligned}

Writing blue-colored texts is difficult and how to write 2 ~s?

. . - 3 months, 3 weeks ago

Log in to reply

Hope that this help.

Chew-Seong Cheong - 3 months, 3 weeks ago
Mark Hennings
Aug 27, 2018

We have F ( b ) = 0 1 ln x ( 1 x ) b 1 d x = d d a 0 1 x a 1 ( 1 x ) b 1 d x a = 1 = a B ( a , b ) a = 1 = B ( a , b ) [ ψ ( a ) ψ ( a + b ) ] a = 1 = Γ ( b ) Γ ( b + 1 ) [ ψ ( 1 ) ψ ( b + 1 ) ] = ψ ( 1 ) ψ ( b + 1 ) b \begin{aligned} F(b) \; = \; \int_0^1 \ln x (1-x)^{b-1}\,dx & = \; \frac{d}{da} \int_0^1 x^{a-1}(1-x)^{b-1}\,dx \Big|_{a=1} \; = \; \frac{\partial}{\partial a}B(a,b)\Big|_{a=1} \; = \; B(a,b)\big[\psi(a) - \psi(a+b)\big]\Big|_{a=1} \\ & = \; \frac{\Gamma(b)}{\Gamma(b+1)}\big[\psi(1) - \psi(b+1)\big] \; = \; \frac{\psi(1) - \psi(b+1)}{b} \end{aligned} and hence 0 1 ln x ln ( 1 x ) d x = F ( 1 ) = ( ψ ( 1 ) ψ ( b + 1 ) b 2 ψ ( b + 1 ) b ) b = 1 = ψ ( 1 ) + ψ ( 2 ) ψ ( 2 ) = ( γ ) + ( 1 γ ) ( 1 + ζ ( 2 ) ) = 2 ζ ( 2 ) \begin{aligned} \int_0^1 \ln x \ln(1-x)\,dx & = \; F'(1) \; = \; \Big(- \frac{\psi(1) - \psi(b+1)}{b^2} - \frac{\psi'(b+1)}{b}\Big)\Big|_{b=1} \; = \; -\psi(1) + \psi(2) - \psi'(2) \\ & = \; -(-\gamma) + (1 - \gamma) - (-1 + \zeta(2)) \; = \; \boxed{2 - \zeta(2)} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...