Integration of square root of quadratic

Calculus Level pending

15 3 1 5 1 4 x 2 + 8 x 1 x + 1 d x \large \int _{ \frac { \sqrt { 15 } }{ 3 } -1 }^{ \sqrt { 5 } -1 }{ \frac { \sqrt { 4{ x }^{ 2 }+8x-1 } }{ x+1 } dx }

If the definite integral above can be expressed in simplest form as a b c π d \frac { a\sqrt { b } -\sqrt { c } \pi }{ d } , find the value of a + b + c + d a+b+c+d .


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anthony Muleta
Jan 4, 2015

First we simplify the expression under the square root by completing the square:

4 x 2 + 8 x 1 = 4 ( x 2 + 2 x ) 1 = 4 [ ( x + 1 ) 2 1 ] 1 = 4 ( x + 1 ) 2 5. 4{ x }^{ 2 }+8x-1=4({ x }^{ 2 }+2x)-1\\ \quad \quad \quad \quad \quad \quad \quad =4[{ (x+1) }^{ 2 }-1]-1\\ \qquad \qquad \quad =4{ (x+1) }^{ 2 }-5.

Next, we make the substitution x = 5 2 sec θ 1 x=\frac { \sqrt { 5 } }{ 2 } \sec { \theta -1 }

d x = 5 2 sec θ tan θ d θ \Rightarrow dx=\frac { \sqrt { 5 } }{ 2 } \sec { \theta \tan { \theta d\theta } }

With a change of variable, we must also change the limits of integration:

When x = 15 3 1 , θ = π 6 x=\frac { \sqrt { 15 } }{ 3 } -1, \theta =\frac { \pi }{ 6 } , and when x = 5 1 , θ = π 3 . x=\sqrt { 5 } -1, \theta =\frac { \pi }{ 3 }.

Hence the integral becomes:

π 6 π 3 4 5 4 sec 2 θ 5 5 2 sec θ 5 2 sec θ tan θ d θ = π 6 π 3 5 ( sec 2 θ 1 ) tan θ d θ = 5 π 6 π 3 tan θ tan θ d θ \int _{ \frac { \pi }{ 6 } }^{ \frac { \pi }{ 3 } }{ \frac { \sqrt { 4\cdot \frac { 5 }{ 4 } \sec ^{ 2 }{ \theta } -5 } }{ \frac { \sqrt { 5 } }{ 2 } \sec { \theta } } \cdot \frac { \sqrt { 5 } }{ 2 } \sec { \theta \tan { \theta d\theta } } } \\ =\int _{ \frac { \pi }{ 6 } }^{ \frac { \pi }{ 3 } }{ \sqrt { 5(\sec ^{ 2 }{ \theta -1) } } \cdot \tan { \theta d\theta } } \\ =\sqrt { 5 } \int _{ \frac { \pi }{ 6 } }^{ \frac { \pi }{ 3 } }{ \left| \tan { \theta } \right| } \cdot \tan { \theta d\theta }

Since tan θ > 0 \tan { \theta > 0 } for our limits, we take the positive root and drop the absolute value bars, giving 5 π 6 π 3 tan 2 θ d θ \\ \sqrt { 5 } \int _{ \frac { \pi }{ 6 } }^{ \frac { \pi }{ 3 } }{ \tan ^{ 2 }{ \theta d\theta } } .

Using the substitution tan 2 θ = sec 2 θ 1 \tan ^{ 2 }{ \theta =\sec ^{ 2 }{ \theta -1 } } , the integral becomes

5 [ tan θ θ ] π 6 π 3 = 4 15 5 π 6 . \sqrt { 5 } { \left[ \tan { \theta -\theta } \right] }_{ \frac { \pi }{ 6 } }^{ \frac { \pi }{ 3 } }\\ =\frac { 4\sqrt { 15 } -\sqrt { 5 } \pi }{ 6 } .

Hence, a = 4 , b = 15 , c = 5 a=4, b=15, c=5 and d = 6 , d=6, and a + b + c + d = 30 a+b+c+d=\boxed { 30 } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...