Integration of Weird Functions - 4

Calculus Level 4

1 8 0 8 0 8 { y } x d x d y = A B \frac{1}{8}\int_{0}^{8}\int_{0}^{8}\{y\}^{\lfloor x \rfloor} dx\ dy = \frac{A}{B}

If the equation above holds true for coprime positive integers A A and B B , find the value of A + B A+B .

Notations


The answer is 1041.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Converting the Integral into a summation:-

1 8 r = 0 7 m = 0 7 r r + 1 ( y r ) m d y \displaystyle \frac{1}{8}\sum_{r=0}^{7}\sum_{m=0}^{7}\int_{r}^{r+1}(y-r)^{m}dy

Substitute y r = z y-r = z

1 8 r = 0 7 m = 0 7 0 1 y m d y = 1 8 r = 0 7 m = 0 7 1 m + 1 = ( 1 1 + 1 2 + . . . . . . + 1 8 ) \displaystyle \frac{1}{8}\sum_{r=0}^{7}\sum_{m=0}^{7}\int_{0}^{1}y^{m}dy = \frac{1}{8}\sum_{r=0}^{7}\sum_{m=0}^{7}\frac{1}{m+1} = \left(\frac{1}{1}+\frac{1}{2}+......+\frac{1}{8}\right)

In general for 0 n 0 n { y } x d x d y = n H n \displaystyle \int_{0}^{n}\int_{0}^{n}\{y\}^{\lfloor x \rfloor}dxdy = nH_{n}

Where H n H_{n} denotes the n t h nth harmonic number .

Chew-Seong Cheong
Jun 21, 2020

Consider I n I_n as follows:

I n = 0 n 0 n { y } x d x d y = 0 n k = 0 n 1 { y } k d y = n k = 0 n 1 0 1 y k d y = n H n where H n denotes the n th harmonic number. I n n = H n \begin{aligned} I_n & = \int_0^n \int_0^n \{y\}^{\lfloor x \rfloor} dx\ dy \\ & = \int_0^n \sum_{k=0}^{n-1} \{y\}^k dy \\ & = n \sum_{k=0}^{n-1} \int_0^1 y^k dy \\ & = nH_n & \small \blue{\text{where }H_n \text{ denotes the }n \text{th harmonic number.}} \\ \implies \frac {I_n}n & = H_n \end{aligned}

Therefore I 8 8 = H 8 = 781 280 \dfrac {I_8}8 = H_8 = \dfrac {781}{280} , A + B = 781 + 280 = 1041 \implies A+B = 781+280 = \boxed{1041} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...