Integration problem

Calculus Level 5

0 π / 2 sin 2 x 1 + tan x d x \large \int_0^{\pi/2} \frac {\sin^2 x}{\sqrt {1+\tan x}} \, dx

Find the value of the closed form of the above integral.

Give your answer to 3 decimal places.


The answer is 0.419.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Oct 26, 2016

Suppose that a , b a,b are real with b > a 2 > 1 b > a^2 > 1 , and consider the integrals I 1 ( a , b ) = 1 d u u 4 + 2 ( b 2 a 2 ) u 2 + b 2 = 1 d u ( u 2 + 2 a u + b ) ( u 2 2 a u + b ) I 2 ( a , b ) = 1 d u ( u 4 + 2 ( b 2 a 2 ) u 2 + b 2 ) 2 = 1 d u ( u 2 + 2 a u + b ) 2 ( u 2 2 a u + b ) 2 I 3 ( a , b ) = 1 ( 1 ( u 2 + 2 a u + b ) 2 + 1 ( u 2 2 a u + b ) 2 ) d u \begin{array}{rcl} \displaystyle I_1(a,b) & = & \displaystyle \int_1^\infty \frac{du}{u^4 + 2(b-2a^2)u^2 + b^2} \; = \; \int_1^\infty \frac{du}{(u^2 + 2au + b)(u^2 - 2au + b)} \\ \displaystyle I_2(a,b) & = & \displaystyle \int_1^\infty \frac{du}{(u^4 + 2(b-2a^2)u^2 + b^2)^2} \; = \; \int_1^\infty \frac{du}{(u^2 + 2au + b)^2(u^2 - 2au + b)^2} \\ \displaystyle I_3(a,b) & = & \displaystyle \int_1^\infty \left(\frac{1}{(u^2 + 2au + b)^2} + \frac{1}{(u^2 - 2au + b)^2}\right)\,du \end{array} Now, using partial fractions and standard integrals I 1 ( a , b ) = 1 4 a b 1 ( u + 2 a u 2 + 2 a u + b u 2 a u 2 2 a u + b ) d u = 1 4 a b 1 ( u + a u 2 + 2 a u + b u a u 2 2 a u + b + a u 2 + 2 a u + b + a u 2 2 a u + b ) d u = 1 4 a b [ 1 2 ln ( u 2 + 2 a u + b u 2 2 a u + b ) + a b a 2 tan 1 ( u + a b a 2 ) + a b a 2 tan 1 ( u a b a 2 ) ] 1 = 1 4 a b [ a π b a 2 1 2 ln ( 1 + 2 a + b 1 2 a + b ) a b a 2 tan 1 ( 1 + a b a 2 ) a b a 2 tan 1 ( 1 a b a 2 ) ] = 1 4 a b [ a π b a 2 1 2 ln ( 1 + 2 a + b 1 2 a + b ) a b a 2 tan 1 ( 2 b a 2 b 1 ) ] \begin{array}{rcl} \displaystyle I_1(a,b) & = & \displaystyle \frac{1}{4ab}\int_1^\infty \left(\frac{u+2a}{u^2 + 2au + b} - \frac{u-2a}{u^2 - 2au + b}\right)\,du \\ & = & \displaystyle \frac{1}{4ab}\int_1^\infty \left(\frac{u+a}{u^2 + 2au + b} - \frac{u-a}{u^2 - 2au + b} + \frac{a}{u^2 + 2au + b} + \frac{a}{u^2 - 2au + b}\right)\,du \\ & = & \displaystyle \frac{1}{4ab}\left[ \tfrac12\ln\left(\frac{u^2 + 2au + b}{u^2 - 2au + b}\right) + \frac{a}{\sqrt{b-a^2}}\tan^{-1}\left(\frac{u+a}{\sqrt{b-a^2}}\right) + \frac{a}{\sqrt{b-a^2}}\tan^{-1}\left(\frac{u-a}{\sqrt{b-a^2}}\right)\right]_1^\infty \\ & = & \displaystyle \frac{1}{4ab}\left[\frac{a \pi}{\sqrt{b-a^2}} - \tfrac12\ln\left(\frac{1+2a+b}{1-2a+b}\right) - \frac{a}{\sqrt{b-a^2}}\tan^{-1}\left(\frac{1+a}{\sqrt{b-a^2}}\right) - \frac{a}{\sqrt{b-a^2}}\tan^{-1}\left(\frac{1-a}{\sqrt{b-a^2}}\right)\right] \\ & = & \displaystyle \frac{1}{4ab}\left[ \frac{a\pi}{\sqrt{b-a^2}} - \tfrac12\ln\left(\frac{1+2a+b}{1-2a+b}\right) - \frac{a}{\sqrt{b-a^2}}\tan^{-1}\left(\frac{2\sqrt{b-a^2}}{b-1}\right)\right] \end{array} Similarly we have 1 ( u 4 + 2 ( b 2 a 2 ) u 2 + b 2 ) 2 = 4 a 2 + b 32 a 3 b 3 [ u + 2 a u 2 + 2 a u + b u 2 a u 2 2 a u + b ] + 1 16 a 2 b 2 [ 2 a u + ( 4 a 2 b ) ( u 2 + 2 a u + b ) 2 2 a u ( 4 a 2 b ) ( u 2 2 a u + b ) 2 ] = 4 a 2 + b 8 a 2 b 2 1 u 4 + 2 ( b 2 a 2 ) u 2 + b 2 + 1 16 a 2 b 2 [ 2 a u + ( 4 a 2 b ) ( u 2 + 2 a u + b ) 2 2 a u ( 4 a 2 b ) ( u 2 2 a u + b ) 2 ] \begin{array}{rcl} \displaystyle \frac{1}{(u^4 + 2(b-2a^2)u^2 + b^2)^2} & = & \displaystyle \frac{4a^2+b}{32a^3b^3}\left[ \frac{u+2a}{u^2 + 2au + b} - \frac{u-2a}{u^2 - 2au + b}\right] \\ & & \displaystyle + \frac{1}{16a^2b^2}\left[\frac{2au + (4a^2 - b)}{(u^2 + 2au + b)^2} - \frac{2au - (4a^2 - b)}{(u^2 - 2au + b)^2}\right] \\ & = & \displaystyle \frac{4a^2 + b}{8a^2b^2} \frac{1}{u^4 + 2(b-2a^2)u^2 + b^2} + \frac{1}{16a^2b^2}\left[\frac{2au + (4a^2 - b)}{(u^2 + 2au + b)^2} - \frac{2au - (4a^2 - b)}{(u^2 - 2au + b)^2}\right] \end{array} and so I 2 ( a , b ) = 4 a 2 + b 8 a 2 b 2 I 1 ( a , b ) + 1 16 a 2 b 2 1 { 2 a ( u + a ( u 2 + 2 a u + b ) 2 u a ( u 2 2 a u + b ) 2 ) + ( 2 a 2 b ) ( 1 ( u 2 + 2 a u + b ) 2 + 1 ( u 2 2 a u + b ) 2 ) } d u = 4 a 2 + b 8 a 2 b 2 I 1 ( a , b ) + 1 16 a b 2 [ 1 u 2 2 a u + b 1 u 2 + 2 a u + b ] 1 + 2 a 2 b 16 a 2 b 2 1 ( 1 ( u 2 + 2 a u + b ) 2 + 1 ( u 2 2 a u + b ) 2 ) d u = 4 a 2 + b 8 a 2 b 2 I 1 ( a , b ) 1 4 b 2 ( ( 1 + b ) 2 4 a 2 ) + 2 a 2 b 16 a 2 b 2 I 3 ( a , b ) \begin{array}{rcl} \displaystyle I_2(a,b) & = & \displaystyle \frac{4a^2 + b}{8a^2b^2}I_1(a,b) + \frac{1}{16a^2b^2}\int_1^\infty \left\{ 2a\left(\frac{u+a}{(u^2 + 2au + b)^2} - \frac{u-a}{(u^2 - 2au + b)^2}\right) + (2a^2 - b)\left(\frac{1}{(u^2 + 2au + b)^2} + \frac{1}{(u^2 - 2au + b)^2}\right)\right\}\,du \\ & = & \displaystyle \frac{4a^2 + b}{8a^2b^2}I_1(a,b) + \frac{1}{16ab^2}\left[ \frac{1}{u^2 - 2au + b} - \frac{1}{u^2 + 2au + b}\right]_1^\infty + \frac{2a^2 - b}{16a^2 b^2}\int_1^\infty \left(\frac{1}{(u^2 + 2au + b)^2} + \frac{1}{(u^2 - 2au + b)^2}\right)\,du \\ & = & \displaystyle \frac{4a^2 + b}{8a^2b^2}I_1(a,b) - \frac{1}{4b^2\big((1+b)^2 - 4a^2\big)} + \frac{2a^2 - b}{16a^2 b^2}I_3(a,b) \end{array} Now, the substitution u + a = b a 2 tan ϕ u + a = \sqrt{b-a^2}\tan\phi shows us that 1 1 ( u 2 + 2 a u + b ) 2 d u = 1 ( b a 2 ) 3 2 tan 1 a + 1 b a 2 1 2 π cos 2 ϕ d ϕ = 1 2 ( b a 2 ) 3 2 [ 1 2 π ( 1 + a ) b a 2 1 + 2 a + b tan 1 ( 1 + a b a 2 ) ] \begin{array}{rcl} \displaystyle \int_1^\infty \frac{1}{(u^2+ 2au + b)^2}\,du & = & \displaystyle \frac{1}{(b-a^2)^{\frac32}}\int_{\tan^{-1}\frac{a+1}{\sqrt{b-a^2}}}^{\frac12\pi} \cos^2\phi\,d\phi \\ & = & \displaystyle \frac{1}{2(b - a^2)^{\frac32}}\left[\tfrac12\pi - \frac{(1+a)\sqrt{b-a^2}}{1+2a+b} -\tan^{-1}\left(\frac{1+a}{\sqrt{b-a^2}}\right)\right] \end{array} so that I 3 ( a , b ) = π 2 ( b a 2 ) 3 2 1 + b 2 a 2 ( b a 2 ) ( ( 1 + b ) 2 4 a 2 ) 1 2 ( b a 2 ) 3 2 tan 1 ( 2 b a 2 b 1 ) I_3(a,b) \; = \; \frac{\pi}{2(b - a^2)^{\frac32}} - \frac{1+b - 2a^2}{(b-a^2)\big((1+b)^2 - 4a^2\big)} - \frac{1}{2(b-a^2)^{\frac32}}\tan^{-1}\left(\frac{2\sqrt{b-a^2}}{b-1}\right) Thus we have concrete, if complicated, expressions for I 1 ( a , b ) I_1(a,b) , I 2 ( a , b ) I_2(a,b) and I 3 ( a , b ) I_3(a,b) .

Going back to the original problem, the substitution u 2 = 1 + tan x u^2 = 1 + \tan x gives us the identity 0 1 2 π sin 2 x 1 + tan x d x = 2 1 ( u 2 1 ) 2 ( ( u 2 1 ) 2 + 1 ) 2 d u = 2 1 1 u 4 2 u 2 + 2 d u 2 1 1 ( u 4 2 u 2 + 2 ) 2 d u = 2 I 1 ( a , b ) 2 I 2 ( a , b ) \begin{array}{rcl} \displaystyle \int_0^{\frac12\pi} \frac{\sin^2x}{\sqrt{1 +\tan x}}\,dx & = & \displaystyle 2\int_1^\infty \frac{(u^2-1)^2}{\big((u^2-1)^2+1\big)^2}\,du \\ & = & \displaystyle 2\int_1^\infty \frac{1}{u^4 - 2u^2 + 2}\,du - 2\int_1^\infty \frac{1}{(u^4 - 2u^2 + 2)^2}\,du \\ & = & \displaystyle 2I_1(a,b) - 2I_2(a,b) \end{array} where a = 1 + 2 2 b = 2 a \; = \; \sqrt{\frac{1+\sqrt{2}}{2}} \hspace{2cm} b \; = \; \sqrt{2} Substituting these values of a a and b b into the above formulae gives the answer 0.418783 \boxed{0.418783} . Although the above formulae give an exact expression for this integral, it does not seem to have any particularly simple form, and so I have omitted it.

Sir,how did you do those massive partial fractions involved in I2?

Indraneel Mukhopadhyaya - 4 years, 7 months ago

Log in to reply

The coefficients are pretty messy, but the shape of the partial fraction expansion (for the reciprocal of the product of the squares of two quadratics) is standard, and the coefficients can be determined by the usual methods.

Mark Hennings - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...