Find the value of the closed form of the above integral.
Give your answer to 3 decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Suppose that a , b are real with b > a 2 > 1 , and consider the integrals I 1 ( a , b ) I 2 ( a , b ) I 3 ( a , b ) = = = ∫ 1 ∞ u 4 + 2 ( b − 2 a 2 ) u 2 + b 2 d u = ∫ 1 ∞ ( u 2 + 2 a u + b ) ( u 2 − 2 a u + b ) d u ∫ 1 ∞ ( u 4 + 2 ( b − 2 a 2 ) u 2 + b 2 ) 2 d u = ∫ 1 ∞ ( u 2 + 2 a u + b ) 2 ( u 2 − 2 a u + b ) 2 d u ∫ 1 ∞ ( ( u 2 + 2 a u + b ) 2 1 + ( u 2 − 2 a u + b ) 2 1 ) d u Now, using partial fractions and standard integrals I 1 ( a , b ) = = = = = 4 a b 1 ∫ 1 ∞ ( u 2 + 2 a u + b u + 2 a − u 2 − 2 a u + b u − 2 a ) d u 4 a b 1 ∫ 1 ∞ ( u 2 + 2 a u + b u + a − u 2 − 2 a u + b u − a + u 2 + 2 a u + b a + u 2 − 2 a u + b a ) d u 4 a b 1 [ 2 1 ln ( u 2 − 2 a u + b u 2 + 2 a u + b ) + b − a 2 a tan − 1 ( b − a 2 u + a ) + b − a 2 a tan − 1 ( b − a 2 u − a ) ] 1 ∞ 4 a b 1 [ b − a 2 a π − 2 1 ln ( 1 − 2 a + b 1 + 2 a + b ) − b − a 2 a tan − 1 ( b − a 2 1 + a ) − b − a 2 a tan − 1 ( b − a 2 1 − a ) ] 4 a b 1 [ b − a 2 a π − 2 1 ln ( 1 − 2 a + b 1 + 2 a + b ) − b − a 2 a tan − 1 ( b − 1 2 b − a 2 ) ] Similarly we have ( u 4 + 2 ( b − 2 a 2 ) u 2 + b 2 ) 2 1 = = 3 2 a 3 b 3 4 a 2 + b [ u 2 + 2 a u + b u + 2 a − u 2 − 2 a u + b u − 2 a ] + 1 6 a 2 b 2 1 [ ( u 2 + 2 a u + b ) 2 2 a u + ( 4 a 2 − b ) − ( u 2 − 2 a u + b ) 2 2 a u − ( 4 a 2 − b ) ] 8 a 2 b 2 4 a 2 + b u 4 + 2 ( b − 2 a 2 ) u 2 + b 2 1 + 1 6 a 2 b 2 1 [ ( u 2 + 2 a u + b ) 2 2 a u + ( 4 a 2 − b ) − ( u 2 − 2 a u + b ) 2 2 a u − ( 4 a 2 − b ) ] and so I 2 ( a , b ) = = = 8 a 2 b 2 4 a 2 + b I 1 ( a , b ) + 1 6 a 2 b 2 1 ∫ 1 ∞ { 2 a ( ( u 2 + 2 a u + b ) 2 u + a − ( u 2 − 2 a u + b ) 2 u − a ) + ( 2 a 2 − b ) ( ( u 2 + 2 a u + b ) 2 1 + ( u 2 − 2 a u + b ) 2 1 ) } d u 8 a 2 b 2 4 a 2 + b I 1 ( a , b ) + 1 6 a b 2 1 [ u 2 − 2 a u + b 1 − u 2 + 2 a u + b 1 ] 1 ∞ + 1 6 a 2 b 2 2 a 2 − b ∫ 1 ∞ ( ( u 2 + 2 a u + b ) 2 1 + ( u 2 − 2 a u + b ) 2 1 ) d u 8 a 2 b 2 4 a 2 + b I 1 ( a , b ) − 4 b 2 ( ( 1 + b ) 2 − 4 a 2 ) 1 + 1 6 a 2 b 2 2 a 2 − b I 3 ( a , b ) Now, the substitution u + a = b − a 2 tan ϕ shows us that ∫ 1 ∞ ( u 2 + 2 a u + b ) 2 1 d u = = ( b − a 2 ) 2 3 1 ∫ tan − 1 b − a 2 a + 1 2 1 π cos 2 ϕ d ϕ 2 ( b − a 2 ) 2 3 1 [ 2 1 π − 1 + 2 a + b ( 1 + a ) b − a 2 − tan − 1 ( b − a 2 1 + a ) ] so that I 3 ( a , b ) = 2 ( b − a 2 ) 2 3 π − ( b − a 2 ) ( ( 1 + b ) 2 − 4 a 2 ) 1 + b − 2 a 2 − 2 ( b − a 2 ) 2 3 1 tan − 1 ( b − 1 2 b − a 2 ) Thus we have concrete, if complicated, expressions for I 1 ( a , b ) , I 2 ( a , b ) and I 3 ( a , b ) .
Going back to the original problem, the substitution u 2 = 1 + tan x gives us the identity ∫ 0 2 1 π 1 + tan x sin 2 x d x = = = 2 ∫ 1 ∞ ( ( u 2 − 1 ) 2 + 1 ) 2 ( u 2 − 1 ) 2 d u 2 ∫ 1 ∞ u 4 − 2 u 2 + 2 1 d u − 2 ∫ 1 ∞ ( u 4 − 2 u 2 + 2 ) 2 1 d u 2 I 1 ( a , b ) − 2 I 2 ( a , b ) where a = 2 1 + 2 b = 2 Substituting these values of a and b into the above formulae gives the answer 0 . 4 1 8 7 8 3 . Although the above formulae give an exact expression for this integral, it does not seem to have any particularly simple form, and so I have omitted it.