Integration time period

Calculus Level 4

Let f : R R f : \mathbb{R} \to \mathbb{R} a periodic and continue function with period T T and F : R R F : \mathbb{R} \to \mathbb{R} antiderivative of f f . Then for a positive integer n n find the value of 0 T [ F ( n x ) F ( x ) f ( x ) ( n 1 ) T 2 ] d x \int \limits_0^T \left[F(nx)-F(x)-f(x)\frac{(n-1)T}{2}\right]dx

-1 1 0 0.5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Charley Shi
May 4, 2021

By the problem statement, this integral must have the same integral for all n n . If we substitute n = 1 n=1 , the integrand becomes 0 so the answer is 0.

Tom Engelsman
May 3, 2021

Let f ( x ) = cos ( 2 π T x ) , F ( x ) = T 2 π sin ( 2 π T x ) f(x) = \cos(\frac{2\pi}{T}x), F(x) = \frac{T}{2\pi} \sin(\frac{2\pi}{T}x) . The above definite integral evaluates to:

0 T F ( n x ) F ( x ) f ( x ) ( n 1 ) T 2 d x = 0 T T 2 π sin ( 2 π T n x ) T 2 π sin ( 2 π T x ) cos ( 2 π T x ) ( n 1 ) T 2 d x \Large \int_{0}^{T} F(nx) - F(x) - f(x) \cdot \frac{(n-1)T}{2} dx = \int_{0}^{T} \frac{T}{2\pi} \sin(\frac{2\pi}{T}nx) - \frac{T}{2\pi}\sin(\frac{2\pi}{T}x) - \cos(\frac{2\pi}{T}x )\cdot \frac{(n-1)T}{2} dx ;

or T 2 π n cos ( 2 π T n x ) T 2 π cos ( 2 π T x ) T 2 π sin ( 2 π T x ) ( n 1 ) T 2 0 T ; \Large -\frac{T}{2\pi n}\cos(\frac{2\pi}{T} nx) - \frac{T}{2\pi}\cos(\frac{2\pi}{T}x)- \frac{T}{2\pi} \sin(\frac{2\pi}{T}x) \cdot \frac{(n-1)T}{2}|_{0}^{T};

or T 2 π n [ cos ( 2 n π ) cos ( 0 ) ] T 2 π [ cos ( 2 π ) cos ( 0 ) ] ( n 1 ) T 2 4 π [ sin ( 2 π ) sin ( 0 ) ] \Large -\frac{T}{2\pi n}[\cos(2n\pi) - \cos(0)] - \frac{T}{2\pi}[\cos(2\pi) - \cos(0)] - \frac{(n-1)T^{2}}{4\pi}[\sin(2\pi) - \sin(0)] ;

or 0 . \Large \boxed{0}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...