Let f : R → R a periodic and continue function with period T and F : R → R antiderivative of f . Then for a positive integer n find the value of 0 ∫ T [ F ( n x ) − F ( x ) − f ( x ) 2 ( n − 1 ) T ] d x
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let f ( x ) = cos ( T 2 π x ) , F ( x ) = 2 π T sin ( T 2 π x ) . The above definite integral evaluates to:
∫ 0 T F ( n x ) − F ( x ) − f ( x ) ⋅ 2 ( n − 1 ) T d x = ∫ 0 T 2 π T sin ( T 2 π n x ) − 2 π T sin ( T 2 π x ) − cos ( T 2 π x ) ⋅ 2 ( n − 1 ) T d x ;
or − 2 π n T cos ( T 2 π n x ) − 2 π T cos ( T 2 π x ) − 2 π T sin ( T 2 π x ) ⋅ 2 ( n − 1 ) T ∣ 0 T ;
or − 2 π n T [ cos ( 2 n π ) − cos ( 0 ) ] − 2 π T [ cos ( 2 π ) − cos ( 0 ) ] − 4 π ( n − 1 ) T 2 [ sin ( 2 π ) − sin ( 0 ) ] ;
or 0 .
Problem Loading...
Note Loading...
Set Loading...
By the problem statement, this integral must have the same integral for all n . If we substitute n = 1 , the integrand becomes 0 so the answer is 0.