integration to infinite

Calculus Level 3

sin 2 x x 2 d x = ? \large \int_{-\infty}^\infty \frac {\sin^2 x}{x^2} dx = \ ?


The answer is 3.1415.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jun 23, 2020

The integral can be solved using differentiation under the integral sign .

I ( a ) = sin 2 ( a x ) x 2 d x , Since the integrand is even, = 2 0 sin 2 ( a x ) x 2 d x I ( a x ) a = 2 0 2 x sin ( a x ) cos ( a x ) x 2 d x = 2 0 sin ( 2 a x ) x d x Let u = 2 a x d u = 2 a d x = 2 0 sin u u d u = 2 Si ( ) where Si ( ) denotes the sine integral. = 2 π 2 = π and Si ( ) = π 2 I ( a ) = π a + C where C denotes the constant of integration. I ( 0 ) = C = 0 I ( a ) = π a \begin{aligned} I(a) & = \int_{-\infty}^\infty \frac {\sin^2 (ax)}{x^2} dx, & \small \blue{\text{Since the integrand is even,}} \\ & = 2 \int_0^\infty \frac {\sin^2 (ax)}{x^2} dx \\ \frac {\partial I(ax)}{\partial a} & = 2 \int_0^\infty \frac {2\cancel x \sin (ax) \cos (ax)}{x^{\cancel 2}} dx \\ & = 2 \int_0^\infty \frac {\sin (2ax)}x dx & \small \blue{\text{Let }u = 2ax \implies du = 2a \ dx} \\ & = 2 \int_0^\infty \frac {\sin u}u du \\ & = 2 \text{ Si }(\infty) & \small \blue{\text{where Si }(\cdot) \text{ denotes the sine integral.}} \\ & = 2 \cdot \frac \pi 2 = \pi & \small \blue{\text{and Si }(\infty) = \frac \pi 2} \\ \implies I(a) & = \pi a + C & \small \blue{\text{where }C \text{ denotes the constant of integration.}} \\ I(0) & = C = 0 \\ \implies I(a) & = \pi a \end{aligned}

Therefore, I ( 1 ) = sin 2 x x 2 d x = π 3.14 \displaystyle I(1) = \int_{-\infty}^\infty \frac {\sin^2 x}{x^2} dx = \pi \approx \boxed{3.14}

in the denominator of 3rd step , where did x^2 vanish ?

Paramananda Das - 11 months, 2 weeks ago

Log in to reply

I have added the explanation in line 3. Take a look.

Chew-Seong Cheong - 11 months, 2 weeks ago

Log in to reply

Oh sorry I forgot the derivative is w.r.t '' a '' . Thank you!

Paramananda Das - 11 months, 2 weeks ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...