integration with tanx

Calculus Level 3

0 1 tan x x d x = ? \int_0^1 \frac {\tan x}x dx = \ ?


The answer is 1.1491.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 17, 2020

One way to solve this is using Maclaurin series as follows:

I = 0 1 tan x x d x = 0 1 1 x ( x + 1 3 x 3 + 2 15 x 5 + 17 315 x 7 + 62 2835 x 9 + ) d x = 0 1 ( 1 + 1 3 x 2 + 2 15 x 4 + 17 315 x 6 + 62 2835 x 8 + ) d x = [ x + 1 3 3 x 3 + 2 15 5 x 5 + 17 315 7 x 7 + 62 2835 9 x 9 + ] 0 1 = 1 + 1 3 3 + 2 15 5 + 17 315 7 + 62 2835 9 + 1.15 \begin{aligned} I & = \int_0^1 \frac {\tan x}x dx \\ & = \int_0^1 \frac 1x \left(x + \frac 13x^3 + \frac 2{15}x^5 + \frac {17}{315}x^7 + \frac {62}{2835}x^9 + \cdots \right) dx \\ & = \int_0^1 \left(1 + \frac 13x^2 + \frac 2{15}x^4 + \frac {17}{315}x^6 + \frac {62}{2835}x^8 + \cdots \right) dx \\ & = \left[x + \frac 1{3\cdot3} x^3 + \frac 2{15\cdot 5}x^5 + \frac {17}{315 \cdot 7}x^7 + \frac {62}{2835 \cdot 9}x^9 + \cdots \right]_0^1 \\ & = 1 + \frac 1{3\cdot3} + \frac 2{15\cdot 5} + \frac {17}{315 \cdot 7} + \frac {62}{2835 \cdot 9} + \cdots \\ & \approx \boxed{1.15} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...