Integration with Trigonometry

Calculus Level 4

2 / 3 8 2 4 x 3 x 8 4 d x = ln A + B B \large \int_{{\sqrt{2}} / {\sqrt[8]{3}}}^{\sqrt{2}}\frac{4x^{3}}{x^{8}-4} \, dx = \ln \sqrt{\frac{A+\sqrt{B}}{\sqrt{B}}}

The equation above holds true for square-free positive integers A A and B B , find A + B A+B .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Jun 28, 2016

Relevant wiki: Integration U-substitution - Given U

I = 2 3 8 2 4 x 3 ( x 4 ) 2 4 d x \mathcal I= \int_{\frac{\sqrt{2}}{\sqrt[8]{3}}}^{\sqrt{2}}\frac{4x^{3}}{(x^{4})^2-4} dx Substitute x 4 = t x^4=t such that 4 x 3 d x = d t 4x^3 dx =dt :

I = 4 3 4 d t t 2 4 = 1 4 ( 4 3 4 d t t 2 4 3 4 d t t + 2 ) \mathcal I= \int_{\frac{4}{\sqrt 3}}^4\dfrac{dt}{t^2-4}\\=\dfrac 14\left( \int_{\frac{4}{\sqrt 3}}^4\dfrac{dt}{t-2}- \int_{\frac{4}{\sqrt 3}}^4\dfrac{dt}{t+2}\right)

= [ ln ( t 2 t + 2 ) 1 / 4 ] 4 3 4 \large =\left[\ln\left(\dfrac{t-2}{t+2}\right)^{1/4}\right]_{\frac{4}{\sqrt 3}}^4

= ln ( ( 2 + 3 ) 2 3 ) 1 / 4 \large =\ln\left(\dfrac{(2+\sqrt 3)^2}{3}\right)^{1/4} = ln ( 2 + 3 3 ) \large =\ln\sqrt{\left(\dfrac{2+\sqrt 3}{\sqrt 3}\right)}

Hence, 2 + 3 = 5 \large 2+3=\boxed 5

Very nice solution! I did not think there was such a short answer. Thank you for sharing it.

Mateo Reddy - 4 years, 11 months ago

Exactly!! , Same solution :)

Aniket Sanghi - 4 years, 10 months ago
Mateo Reddy
Jun 28, 2016

Let x = 2 sec θ 4 x=\sqrt[4]{2\sec \theta}

d x d θ = 1 4 ( 2 sec θ ) 3 4 ( 2 sec θ tan θ ) = 2 sec θ sec 2 θ 1 4 ( 2 sec θ ) 3 4 = sec θ 4 sec 2 θ 4 4 ( 2 sec θ ) 3 4 \frac{\mathrm{d}x }{\mathrm{d}\theta}=\frac{1}{4}(2\sec\theta)^{-\frac{3}{4}}(2\sec\theta \tan\theta)=\frac{2\sec\theta \sqrt{\sec^{2}\theta-1}}{4(2\sec\theta)^{\frac{3}{4}}}=\frac{\sec\theta\sqrt{4\sec^{2}\theta -4}}{4(2\sec\theta)^{\frac{3}{4}}}

d x = sec θ 4 sec 2 θ 4 4 ( 2 sec θ ) 3 4 d θ \mathrm{d}x=\frac{\sec\theta\sqrt{4\sec^{2}\theta -4}}{4(2\sec\theta)^{\frac{3}{4}}}\mathrm{d}\theta

Changing bounds

2 = 2 sec θ 4 \sqrt{2}=\sqrt[4]{2\sec \theta}

4 = 2 sec θ 4=2\sec\theta

cos θ = 1 2 \cos\theta=\frac{1}{2} so θ = π 3 \theta=\frac{\pi}{3}

2 3 8 = 2 sec θ 4 {\frac{\sqrt{2}}{\sqrt[8]{3}}}=\sqrt[4]{2\sec \theta}

4 3 = 2 sec θ \frac{4}{\sqrt{3}}=2\sec\theta

cos θ = 3 2 \cos\theta=\frac{\sqrt{3}}{2} so θ = π 6 \theta=\frac{\pi}{6}

Now we have

π 6 π 3 4 ( 2 sec θ ) 3 4 4 sec 2 θ 4 × sec θ 4 sec 2 θ 4 4 ( 2 sec θ ) 3 4 d θ = π 6 π 3 2 sec θ tan θ 4 tan 2 θ d θ \int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{4(2\sec\theta)^{\frac{3}{4}}}{4\sec^{2}\theta -4}\times \frac{\sec\theta\sqrt{4\sec^{2}\theta -4}}{4(2\sec\theta)^{\frac{3}{4}}}\mathrm{d}\theta=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{2\sec\theta \tan\theta}{4\tan^{2}\theta}\mathrm{d}\theta

= 1 2 π 6 π 3 sec θ tan θ d θ = 1 2 π 6 π 3 csc θ d θ =\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{\sec\theta}{\tan\theta}\mathrm{d}\theta=\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\csc\theta \mathrm{d}\theta

To solve we can multiply top and bottom by ( csc θ + cot θ ) (\csc\theta +\cot\theta)

= 1 2 π 6 π 3 csc θ ( csc θ + cot θ ) csc θ + cot θ d θ = 1 2 π 6 π 3 csc 2 θ + csc θ cot θ csc θ + cot θ d θ =\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{\csc\theta (\csc\theta +\cot\theta)}{ \csc\theta +\cot\theta} \mathrm{d}\theta=\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{\csc^{2}\theta +\csc\theta \cot\theta}{\csc\theta +\cot\theta} \mathrm{d}\theta

Using u-substitution

u = csc θ + cot θ u=\csc\theta + \cot\theta

d u d θ = csc θ cot θ csc 2 θ \frac{\mathrm{d}u}{\mathrm{d}\theta}=-\csc\theta \cot\theta -\csc^{2}\theta

d θ = 1 csc θ cot θ + csc 2 θ d u \mathrm{d}\theta=-\frac{1}{\csc\theta \cot\theta +\csc^{2}\theta}\mathrm{d}u

1 2 π 6 π 3 csc 2 θ + csc θ cot θ u × ( 1 csc θ cot θ + csc 2 θ ) d u = 1 2 π 6 π 3 1 u d u \frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{\csc^{2}\theta +\csc\theta \cot\theta}{u} \times \ (-\frac{1}{\csc\theta \cot\theta +\csc^{2}\theta})\mathrm{d}u=-\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{1}{u}\mathrm{d}u

= [ 1 2 ln csc θ + cot θ ] π 6 π 3 =\left [ -\frac{1}{2}\ln\left | \csc\theta +\cot\theta\right | \right]_{\frac{\pi}{6}}^{\frac{\pi}{3}}

1 2 ln 2 3 + 1 3 + 1 2 ln 2 + 3 -\frac{1}{2}\ln \left | \frac{2}{\sqrt{3}}+\frac{1}{\sqrt{3}} \right |+\frac{1}{2}\ln \left | 2+\sqrt{3} \right|

1 2 ( ln ( 2 + 3 ) ln ( 3 ) ) = 1 2 ln ( 2 + 3 3 ) = ln 2 + 3 3 \frac{1}{2}(\ln(2+\sqrt{3})-\ln(\sqrt{3}))=\frac{1}{2}\ln \left (\frac{2+\sqrt{3}}{\sqrt{3}} \right)=\ln \sqrt{\frac{2+\sqrt{3}}{\sqrt{3}}}

A + B = 2 + 3 = 5 \therefore A+B=2+3=\mathbf{5}

Without trigonometry it is quite easy

Akash aggrawal - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...