Integration without fun-ction

Calculus Level 3

f ( 1 x ) + x 2 f ( x ) = 0 \large f\left(\frac1x\right) + x^2 f(x) = 0

If the function f ( x ) f(x) satisfies the equation above, evalute the integral below.

I = sin θ csc θ f ( x ) d x \large I = \int_{\sin\theta}^{\csc \theta} f(x) \, dx

None of these π \pi π 2 \frac { \pi }{ 2 } 1 e 0 Not sufficient information e -1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

F r o m t h e g i v e n c o n d i t i o n f ( x ) = 1 x 2 f ( 1 x ) I = sin θ csc θ 1 x 2 f ( 1 x ) . d x 1 P u t t i n g 1 x = t 1 x 2 . d x = d t I = csc θ sin θ f ( t ) . d t = csc θ sin θ f ( x ) . d x F r o m t h i s w e g e t : I = sin θ csc θ f ( x ) . d x 2 A d d i n g b o t h e q u a t i o n s w e g e t I = 0 From\quad the\quad given\quad condition\\ f\left( x \right) =-\frac { 1 }{ { x }^{ 2 } } f\left( \frac { 1 }{ x } \right) \\ I=\int _{ \sin { \theta } }^{ \csc { \theta } }{ -\frac { 1 }{ { x }^{ 2 } } f\left( \frac { 1 }{ x } \right) .dx } \quad \longrightarrow \boxed { 1 } \\ Putting\quad \frac { 1 }{ x } =t\quad \Rightarrow -\frac { 1 }{ { x }^{ 2 } } .dx=dt\\ I=\int _{ \csc { \theta } }^{ \sin { \theta } }{ f(t).dt } =\int _{ \csc { \theta } }^{ \sin { \theta } }{ f(x).dx } \\ From\quad this\quad we\quad get:\\ \quad \quad \quad I=\quad -\int _{ \sin { \theta } }^{ \csc { \theta } }{ f(x).dx } \quad \quad \quad \longrightarrow \boxed { 2 } \\ Adding\quad both\quad equations\quad we\quad get\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \boxed { I=0 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...